354 research outputs found

    Pion and Kaon Production in e+ee^+e^- and epep Collisions at Next-to-Leading Order

    Full text link
    We present new sets of fragmentation functions for charged pions and kaons, both at leading and next-to-leading order. They are fitted to data on inclusive charged-hadron production in e+ee^+e^- annihilation taken by TPC at PEP (s=29\sqrt s=29~GeV) and to similar data by ALEPH at LEP, who discriminated between events with charm, bottom, and light- flavour fragmentation in their charged-hadron sample. We treat all partons independently and to properly incorporate the charm and bottom thresholds. Due to the sizeable energy gap between PEP and LEP, we are sensitive to the scaling violation in the fragmentation process, which allows us to extract a value for the asymptotic scale parameter of QCD, Λ\Lambda. Recent data on inclusive charged-hadron production in tagged three-jet events by OPAL and similar data for longitudinal electron polarization by ALEPH allow us to pin down the gluon fragmentation functions. Our new fragmentation functions lead to an excellent description of a multitude of other e+ee^+e^- data on inclusive charged-hadron production, ranging from s=5.2\sqrt s=5.2~GeV to LEP energy. In addition, they agree nicely with the transverse-momentum spectra of single charged hadrons measured by H1 and ZEUS in photoproduction at the epep collider HERA, which represents a nontrivial check of the factorization theorem of the QCD-improved parton model.Comment: 22 pages, latex, 13 compressed ps figures in separate fil

    Influence of heavy modes on perturbations in multiple field inflation

    Full text link
    We investigate linear cosmological perturbations in multiple field inflationary models where some of the directions are light while others are heavy (with respect to the Hubble parameter). By integrating out the massive degrees of freedom, we determine the multi-dimensional effective theory for the light degrees of freedom and give explicitly the propagation matrix that replaces the effective sound speed of the one-dimensional case. We then examine in detail the consequences of a sudden turn along the inflationary trajectory, in particular the possible breakdown of the low energy effective theory in case the heavy modes are excited. Resorting to a new basis in field space, instead of the usual adiabatic/entropic basis, we study the evolution of the perturbations during the turn. In particular, we compute the power spectrum and compare with the result obtained from the low energy effective theory.Comment: 24 pages, 13 figures; v2 substantial changes in sec.V; v3 matching the published version on JCA

    Reassessing changes in diurnal temperature range: Intercomparison and evaluation of existing global data set estimates

    Get PDF
    Changes in diurnal temperature range (DTR) over global land areas are compared from a broad range of independent data sets. All data sets agree that global-mean DTR has decreased significantly since 1950, with most of that decrease occurring over 1960–1980. The since-1979 trends are not significant, with inter-data set disagreement even over the sign of global changes. Inter-data set spread becomes greater regionally and in particular at the grid box level. Despite this, there is general agreement that DTR decreased in North America, Europe, and Australia since 1951, with this decrease being partially reversed over Australia and Europe since the early 1980s. There is substantive disagreement between data sets prior to the middle of the twentieth century, particularly over Europe, which precludes making any meaningful conclusions about DTR changes prior to 1950, either globally or regionally. Several variants that undertake a broad range of approaches to postprocessing steps of gridding and interpolation were analyzed for two of the data sets. These choices have a substantial influence in data sparse regions or periods. The potential of further insights is therefore inextricably linked with the efficacy of data rescue and digitization for maximum and minimum temperature series prior to 1950 everywhere and in data sparse regions throughout the period of record. Over North America, station selection and homogeneity assessment is the primary determinant. Over Europe, where the basic station data are similar, the postprocessing choices are dominant. We assess that globally averaged DTR has decreased since the middle twentieth century but that this decrease has not been linear

    Large slow-roll corrections to the bispectrum of noncanonical inflation

    Full text link
    Nongaussian statistics are a powerful discriminant between inflationary models, particularly those with noncanonical kinetic terms. Focusing on theories where the Lagrangian is an arbitrary Lorentz-invariant function of a scalar field and its first derivatives, we review and extend the calculation of the observable three-point function. We compute the "next-order" slow-roll corrections to the bispectrum in closed form, and obtain quantitative estimates of their magnitude in DBI and power-law k-inflation. In the DBI case our results enable us to estimate corrections from the shape of the potential and the warp factor: these can be of order several tens of percent. We track the possible sources of large logarithms which can spoil ordinary perturbation theory, and use them to obtain a general formula for the scale dependence of the bispectrum. Our result satisfies the next-order version of Maldacena's consistency condition and an equivalent consistency condition for the scale dependence. We identify a new bispectrum shape available at next-order, which is similar to a shape encountered in Galileon models. If fNL is sufficiently large this shape may be independently detectable.Comment: v1: 37 pages, plus tables, figures and appendices. v2: supersedes version published in JCAP; some clarifications and more detailed comparison with earlier literature. All results unchanged. v3:improvements to some plots; text unchange

    Observation of exclusive DVCS in polarized electron beam asymmetry measurements

    Full text link
    We report the first results of the beam spin asymmetry measured in the reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry with a sin(phi) modulation is observed, as predicted for the interference term of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and leading-twist pQCD, the alpha is directly proportional to the imaginary part of the DVCS amplitude.Comment: 6 pages, 5 figure

    A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments

    Get PDF
    We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.Comment: revtex4 18 pp., 12 figure

    Next-to-Leading Order Fragmentation Functions for Pions and Kaons

    Full text link
    We present new sets of fragmentation functions for charged pions and kaons, both at leading and next-to-leading order. They are fitted to TPC data taken at energy s=29\sqrt s=29~GeV and describe excellently a wealth of other e+ee^+e^- data on charged-hadron production, ranging from s=5.2\sqrt s=5.2~GeV way up to LEP~1 energy. They also agree with data on the production of neutral pions and kaons, if one makes the natural assumption that the respective fragmentation functions are related to the charged counterparts by SU(2) symmetry. We also list simple parameterizations of the xx and Q2Q^2 dependence of our results, which may be implemented conveniently in applications.Comment: 22 p. + 12 figures (1 compressed Ps-file), DESY 94-124 figure file replaced by uuencoded fil

    Measurement of D* Meson Cross Sections at HERA and Determination of the Gluon Density in the Proton using NLO QCD

    Get PDF
    With the H1 detector at the ep collider HERA, D* meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x_g g(x_g), has been extracted in the momentum fraction range 7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon momentum fraction x_g has been obtained from the measured kinematics of the scattered electron and the D* meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F_2.Comment: 27 pages, 9 figures, 2 tables, submitted to Nucl. Phys.

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
    corecore