1,824 research outputs found

    Point-contact Andreev reflection spectroscopy of heavy-fermion-metal/superconductor junctions

    Full text link
    Our previous point-contact Andreev reflection studies of the heavy-fermion superconductor CeCoIn5_5 using Au tips have shown two clear features: reduced Andreev signal and asymmetric background conductance [1]. To explore their physical origins, we have extended our measurements to point-contact junctions between single crystalline heavy-fermion metals and superconducting Nb tips. Differential conductance spectra are taken on junctions with three heavy-fermion metals, CeCoIn5_5, CeRhIn5_5, and YbAl3_3, each with different electron mass. In contrast with Au/CeCoIn5_5 junctions, Andreev signal is not reduced and no dependence on effective mass is observed. A possible explanation based on a two-fluid picture for heavy fermions is proposed. [1] W. K. Park et al., Phys. Rev. B 72 052509 (2005); W. K. Park et al., Proc. SPIE-Int. Soc. Opt. Eng. 5932 59321Q (2005); W. K. Park et al., Physica C (in press) (cond-mat/0606535).Comment: 2 pages, 2 figures, submitted to the SCES conference, Houston, Texas, USA, May 13-18, 200

    Robust optimization in simulation: Taguchi and response surface methodology

    Get PDF
    Optimization of simulated systems is tackled by many methods, but most methods assume known environments. This article, however, develops a `robust' methodology for uncertain environments. This methodology uses Taguchi's view of the uncertain world, but replaces his statistical techniques by Response Surface Methodology (RSM). George Box originated RSM, and Douglas Montgomery recently extended RSM to robust optimization of real (non-simulated) systems. We combine Taguchi's view with RSM for simulated systems. We illustrate the resulting methodology through classic Economic Order Quantity (EOQ) inventory models, which demonstrate that robust optimization may require order quantities that differ from the classic EOQ

    Specific Heat Study of the Magnetic Superconductor HoNi2B2C

    Full text link
    The complex magnetic transitions and superconductivity of HoNi2B2C were studied via the dependence of the heat capacity on temperature and in-plane field angle. We provide an extended, comprehensive magnetic phase diagram for B // [100] and B // [110] based on the thermodynamic measurements. Three magnetic transitions and the superconducting transition were clearly observed. The 5.2 K transition (T_{N}) shows a hysteresis with temperature, indicating the first order nature of the transition at B=0 T. The 6 K transition (T_{M}), namely the onset of the long-range ordering, displays a dramatic in-plane anisotropy: T_{M} increases with increasing magnetic field for B // [100] while it decreases with increasing field for B // [110]. The anomalous anisotropy in T_{M} indicates that the transition is related to the a-axis spiral structure. The 5.5 K transition (T^{*}) shows similar behavior to the 5.2 K transition, i.e., a small in-plane anisotropy and scaling with Ising model. This last transition is ascribed to the change from a^{*} dominant phase to c^{*} dominant phase.Comment: 9 pages, 11 figure

    Temperature-dependent Raman spectroscopy in BaRuO3_3 systems

    Full text link
    We investigated the temperature-dependence of the Raman spectra of a nine-layer BaRuO3_3 single crystal and a four-layer BaRuO3_3 epitaxial film, which show pseudogap formations in their metallic states. From the polarized and depolarized spectra, the observed phonon modes are assigned properly according to the predictions of group theory analysis. In both compounds, with decreasing temperature, while A1gA_{1g} modes show a strong hardening, EgE_g (or E2gE_{2g}) modes experience a softening or no significant shift. Their different temperature-dependent behaviors could be related to a direct Ru metal-bonding through the face-sharing of RuO6_6. It is also observed that another E2gE_{2g} mode of the oxygen participating in the face-sharing becomes split at low temperatures in the four layer BaRuO3_3 . And, the temperature-dependence of the Raman continua between 250 \sim 600 cm1^{-1} is strongly correlated to the square of the plasma frequency. Our observations imply that there should be a structural instability in the face-shared structure, which could be closely related to the pseudogap formation of BaRuO3_3 systems.Comment: 8 pages, 6 figures. to be published in Phys. Rev.

    BCS theory for s+g-wave superconductivity borocarbides Y(Lu)Ni2_2B2_2C

    Full text link
    The s+g mixed gap function \Delta_k=\Delta {[(1-x)-x\sin^4\theta\cos4\phi]} (x: weight of g-wave component) has been studied within BCS theory. By suitable consideration of the pairing interaction, we have confirmed that the coexistence of s- and g-wave, as well as the state with equal s and g amplitudes (i.e., x=1/2) may be stable. This provides the semi-phenomenological theory for the s+g-wave superconductivity with point nodes which has been observed experimentally in borocarbides YNi_2B_2C and possibly in LuNi_2B_2C.Comment: 5 pages, 3 figure

    Opposing action of the FLR-2 glycoprotein hormone and DRL-1/FLR-4 MAP kinases balance p38-mediated growth and lipid homeostasis in C. elegans

    Get PDF
    AAUnim: Pallseainsetecgonrafitremdtheavteallolhpemadeinntgalleavenldsanruertreiptiroensaenl tseidgcnoarlrsebctelyfo: re committing crucial resources to growth and reproduction; however, the pathways that perceive and respond to these inputs remain poorly understood. Here, we demonstrate that DRL-1 and FLR-4, which share similarity with mammalian mitogen-activated protein kinases, maintain lipid homeostasis in the C. elegans intestine. DRL-1 and FLR-4 function in a protein complex at the plasma membrane to promote development, as mutations in drl-1 or flr-4 confer slow growth, small body size, and impaired lipid homeostasis. To identify factors that oppose DRL-1/FLR-4, we performed a forward genetic screen for suppressors of the drl-1 mutant phenotypes and identified mutations in flr-2 and fshr-1, which encode the orthologues of follicle stimulating hormone and its putative G protein-coupled receptor, respectively. In the absence of DRL-1/FLR-4, neuronal FLR-2 acts through intestinal FSHR-1 and protein kinase A signaling to restrict growth. Furthermore, we show that opposing signaling through DRL-1 and FLR-2 coordinates TIR-1 oligomerization, which modulates downstream p38/ PMK-1 activity, lipid homeostasis, and development. Finally, we identify a surprising noncanonical role for the developmental transcription factor PHA-4/FOXA in the intestine where it restricts growth in response to impaired DRL-1 signaling. Our work uncovers a complex multi-tissue signaling network that converges on p38 signaling to maintain homeostasis during development

    Prominent bulk pinning effect in the MgB_2 superconductor

    Full text link
    We report the magnetic-field dependence of the irreversible magnetization of the recently discovered binary superconductor MgB2_{2}. For the temperature region of T<0.9TcT< 0.9T_c, the contribution of the bulk pinning to the magnetization overwhelms that of the surface pinning. This was evident from the fact that the magnetization curves, M(H)M(H), were well described by the critical-state model without considering the surface pinning effect. It was also found that the M(H)M(H) curves at various temperatures scaled when the field and the magnetization were normalized by the characteristic scaling factors H(T)H^\ast(T) and M(T)M^\ast(T), respectively. This feature suggests that the pinning mechanism determining the hysteresis in M(H)M(H) is unique below T=TcT=T_c.Comment: 4pages and 4 figures. Phys. Rev. B (accepted
    corecore