305 research outputs found

    VOID EVOLUTION DURING STAMP-FORMING OF THERMOPLASTIC COMPOSITES

    Get PDF
    SUMMARY: A thermoplastic stamp-forming process has been investigated using glass fibre (GF), carbon fibre (CF), and hybrid carbon-glass fibre fabric materials. For monolithic GF/PA6 and CF/PA66 materials, stamping pressure was the dominating variable to achieve high mechanical properties, low void contents, and minimal void content distributions across the stamped part. Use of a hybrid flow core material composed of CF/PA66 textile skins and a GF/PA66 random fibre core reduced this tendency such that tool temperature dominated the process. The increased local flow of the core layer accommodated the varying local superficial fabric density. Use of the flow core did not significantly affect flexural properties, but with a 29% and 17% drop in tensile modulus and strength. A substantial cost saving resulted from the use of a hybrid glass and carbon structure. In mould cycle times of 30s resulted for 3mm thick parts

    The Moral Economy of Heroin in ‘Austerity Britain’

    Get PDF
    This article presents the findings of an ethnographic exploration of heroin use in a disadvantaged area of the United Kingdom. Drawing on developments in continental philosophy as well as debates around the nature of social exclusion in the late-modern west, the core claim made here is that the cultural systems of exchange and mutual support which have come to underpin heroin use in this locale—that, taken together, form a ‘moral economy of heroin’—need to be understood as an exercise in reconstituting a meaningful social realm by, and specifically for, this highly marginalised group. The implications of this claim are discussed as they pertain to the fields of drug policy, addiction treatment, and critical criminological understandings of disenfranchised groups

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    Flow Properties of Tailored Net-Shape Thermoplastic Composite Preforms

    Get PDF
    A novel thermoplastic programmable preforming process, TP-P4, has been used to manufacture preforms for non-isothermal compression molding. Commingled glass and polypropylene yarns are deposited by robot onto a vacuum screen, followed by a heat-setting operation to stabilize the as-placed yarns for subsequent handling. After an optional additional preconsolidation stage, the preforms are molded by preheating and subsequent press forming in a shear edge tool. The in- and out-of-plane flow capabilities of the material were investigated, and compared to those of 40 wt% Glass Mat Thermoplastics (GMTs). Although the TP-P4 material has a fiber fraction of 60 wt%, the material could be processed to fill 77 mm deep ribs with a thickness of 3 mm, indicative of complex part production. The pressure requirements for out-of-plane flow were shown to depend on the fiber length and fiber alignment. Segregation phenomena were found to be less severe with TP-P4 than with GMT material

    Using statistical and artificial neural networks to predict the permeability of loosely packed granular materials

    Get PDF
    Well-known analytical equations for predicting permeability are generally reported to overestimate this important property of porous media. In this work, more robust models developed from statistical (multivariable regression) and Artificial Neural Network (ANN) methods utilised additional particle characteristics [‘fines ratio’ (x50/x10) and particle shape] that are not found in traditional analytical equations. Using data from experiments and literature, model performance analyses with average absolute error (AAE) showed error of ~40% for the analytical models (Kozeny–Carman and Happel–Brenner). This error reduces to 9% with ANN model. This work establishes superiority of the new models, using experiments and mathematical techniques

    Analysis of a panel of antibodies to APC reveals consistent activity towards an unidentified protein

    Get PDF
    Acquisition of truncating mutations in the adenomatous polyposis coli (APC) protein underlies the progression of the majority of sporadic and familial colorectal cancers. As such, the localisation patterns and interacting partners of APC have been extensively studied in a range of systems, relying on the use of a broad panel of antibodies. Until recently, antibodies to APC have been used largely unchecked. However, several recent reports have been invaluable in clarifying the use of a number of antibodies commonly used to detect APC. Here, we analyse the specificity of a further subset of antibodies to APC. We used a panel of six commercially available antibodies (directed to the amino and carboxy termini of APC) and confirm the detection of full-length APC by immunoblotting. We demonstrate that a 150 kDa protein, also reproducibly detected by this panel of antibodies, is unlikely to be APC. We present data for the immunological staining patterns of the APC antibodies and validate the results through RNAi. Using this approach, we confirm that the apical staining pattern, observed by immunofluorescence and previously reported in cell systems, is unlikely to be APC. Finally, we present our data as a summary of APC-antibody specificities for APC

    From "Infant Hercules" to "Ghost Town":Industrial collapse and social harm on Teesside

    Get PDF
    This article explicates the harms associated with deindustrialization in Teesside in the North East of England in the context of neoliberalism. Drawing on in-depth qualitative interviews (n = 25), the article explores how ongoing industrial collapse, typified by Sahaviriya Steel Industries’ (SSI) closure in 2015, has generated various harms. First, the article examines industrialism’s socioeconomic security and stability. It then explores the negative impact of SSI’s closure in 2015, including a sense of loss and unemployment. Next, it demonstrates how the absence of economic stability produces harmful outcomes, namely insecurity, mental health problems and bleak visions of the future. The article concludes by casting industrial ruination as an impediment to human flourishing; the normal functioning of capitalism represents a “negative motivation to harm” that prevents the stability and security necessary for individual and collective flourishin

    Closed-Loop Recycling of Copper from Waste Printed Circuit Boards Using Bioleaching and Electrowinning Processes

    Get PDF
    International audienceIn the present study, a model of closed-loop recycling of copper from PCBs is demonstrated, which involves the sequential application of bioleaching and electrowinning to selectively extract copper. This approach is proposed as part of the solution to resolve the challenging ever-increasing accumulation of electronic waste, e-waste, in the environment. This work is targeting copper, the most abundant metal in e-waste that represents up to 20% by weight of printed circuit boards (PCBs). In the first stage, bioleaching was tested for different pulp densities (0.25–1.00% w/v) and successfully used to extract multiple metals from PCBs using the acidophilic bacterium, Acidithiobacillus ferrooxidans. In the second stage, the method focused on the recovery of copper from the bioleachate by electrowinning. Metallic copper foils were formed, and the results demonstrated that 75.8% of copper available in PCBs had been recovered as a high quality copper foil, with 99 + % purity, as determined by energy dispersive X-ray analysis and Inductively-Coupled Plasma Optical Emission Spectrometry. This model of copper extraction, combining bioleaching and electrowinning, demonstrates a closed-loop method of recycling that illustrates the application of bioleaching in the circular economy. The copper foils have the potential to be reused, to form new, high value copper clad laminate for the production of complex printed circuit boards for the electronics manufacturing industry. Graphic Abstract: [Figure not available: see fulltext.] © 2020, The Author(s)

    Maximum expected accuracy structural neighbors of an RNA secondary structure

    Get PDF
    International audienceBACKGROUND: Since RNA molecules regulate genes and control alternative splicing by allostery, it is important to develop algorithms to predict RNA conformational switches. Some tools, such as paRNAss, RNAshapes and RNAbor, can be used to predict potential conformational switches; nevertheless, no existent tool can detect general (i.e., not family specific) entire riboswitches (both aptamer and expression platform) with accuracy. Thus, the development of additional algorithms to detect conformational switches seems important, especially since the difference in free energy between the two metastable secondary structures may be as large as 15-20 kcal/mol. It has recently emerged that RNA secondary structure can be more accurately predicted by computing the maximum expected accuracy (MEA) structure, rather than the minimum free energy (MFE) structure. RESULTS: Given an arbitrary RNA secondary structure S₀ for an RNA nucleotide sequence a = a₁,..., a(n), we say that another secondary structure S of a is a k-neighbor of S₀, if the base pair distance between S₀ and S is k. In this paper, we prove that the Boltzmann probability of all k-neighbors of the minimum free energy structure S₀ can be approximated with accuracy ε and confidence 1 - p, simultaneously for all 0 ≤ k N(ε,p,K)=Φ⁻¹(p/2K)²/4ε², where Φ(z) is the cumulative distribution function (CDF) for the standard normal distribution. We go on to describe the algorithm RNAborMEA, which for an arbitrary initial structure S₀ and for all values 0 ≤ k < K, computes the secondary structure MEA(k), having maximum expected accuracy over all k-neighbors of S₀. Computation time is O(n³ * K²), and memory requirements are O(n² * K). We analyze a sample TPP riboswitch, and apply our algorithm to the class of purine riboswitches. CONCLUSIONS: The approximation of RNAbor by sampling, with rigorous bound on accuracy, together with the computation of maximum expected accuracy k-neighbors by RNAborMEA, provide additional tools toward conformational switch detection. Results from RNAborMEA are quite distinct from other tools, such as RNAbor, RNAshapes and paRNAss, hence may provide orthogonal information when looking for suboptimal structures or conformational switches. Source code for RNAborMEA can be downloaded from http://sourceforge.net/projects/rnabormea/ or http://bioinformatics.bc.edu/clotelab/RNAborMEA/
    corecore