2,262 research outputs found

    Transuranic Actinide Reactions with Simple Gas-Phase Molecules

    Get PDF

    Scaling graphs of heart rate time series in athletes demonstrate the VLF, LF and HF regions

    Full text link
    Scaling analysis of heart rate time series has emerged as an useful tool for assessment of autonomic cardiac control. We investigate the heart rate time series of ten athletes (five males and five females), by applying detrended fluctuation analysis (DFA). High resolution ECGs are recorded under standardized resting conditions over 30 minutes and subsequently heart rate time series are extracted and artefacts filtered. We find three distinct regions of scale-invariance, which correspond to the well-known VLF, LF, and HF bands in the power spectra of heart rate variability. The scaling exponents alpha are alphaHF: 1.15 [0.96-1.22], alphaLF: 0.68 [0.57-0.84], alphaVLF: 0.83[0.82-0.99]; p<10^-5). In conclusion, DFA scaling exponents of heart rate time series should be fitted to the VLF, LF, and HF ranges, respectively

    Combining visibilities from the Giant Meterwave Radio Telescope and the Nancay Radio Heliograph: High dynamic range snapshot images of the solar corona at 327 MHz

    Full text link
    We report first results from an ongoing program of combining visibilities from the Giant Meterwave Radio Telescope (GMRT) and the Nancay Radio Heliograph (NRH) to produce composite snapshot images of the sun at meter wavelengths. We describe the data processing, including a specific multi-scale CLEAN algorithm. We present results of a) simulations for two models of the sun at 327 MHz, with differing complexity b) observations of a complex noise storm on the sun at 327 MHz on Aug 27 2002. Our results illustrate the capacity of this method to produce high dynamic range snapshot images when the solar corona has structures with scales ranging from the image resolution of 49" to the size of the whole sun. We find that we cannot obtain reliable snapshot images for complex objects when the visibilities are sparsely sampled.Comment: Accepted for publication in Astronomy & Astrophysics. Version with high resolution figures available from ftp://ftp.iucaa.ernet.in/in.coming/gmrtnr

    Limits on I-band microvariability of the Galactic Bulge Miras

    Full text link
    We search for microvariability in a sample of 485 Mira variables with high quality I-band light curves from the second generation Optical Gravitational Lensing Experiment (OGLE-II). Rapid variations with amplitudes in the ~0.2-1.1 mag range lasting hours to days were discovered in Hipparcos data by de Laverny et al. (1998). Our search is primarily sensitive to events with time-scales of about 1 day, but retains a few percent efficiency (per object) for detecting unresolved microvariability events as short as 2 hours. We do not detect any candidate events. Assuming that the distribution of the event time profiles is identical to that from the Hipparcos light curves we derive the 95% confidence level upper limit of 0.038 per year per star for the rate of such events (1 per 26 years per average object of the ensemble). The high event rates of the order of 1 per year per star implied by the Hipparcos study in the H_P band are excluded with high confidence by the OGLE-II data in the I band. Our non-detection could still be explained by much redder spectral response of the I filter compared to the H_P band or by population differences between the bulge and the solar neighborhood. In any case, the OGLE-II I-band data provide the first limit on the rate of the postulated microvariability events in Mira stars and offer new quantitative constraints on their properties. Similar limits are obtained for other pulse shapes and a range of the assumed time-scales and size-frequency distributions.Comment: Accepted for publication in Ap

    Simulating spatial and temporal evolution of multiple wing cracks around faults in crystalline basement rocks

    Get PDF
    Fault zones are structurally highly spatially heterogeneous and hence extremely complex. Observations of fluid flow through fault zones over several scales show that this structural complexity is reflected in the hydrogeological properties of faults. Information on faults at depth is scarce, hence, it is highly valuable to understand the controls on spatial and temporal fault zone development. In this paper we increase our understanding of fault damage zone development in crystalline rocks by dynamically simulating the growth of single and multiple splay fractures produced from failure on a pre-existing fault. We present a new simulation model, MOPEDZ (Modeling Of Permeability Evolution in the Damage Zone surrounding faults), that simulates fault evolution through solution of Navier's equation with a combined Mohr-Coulomb and tensile failure criteria. Simulations suggest that location, frequency, mode of failure and orientation of splay fractures are significantly affected both by the orientation of the fault with respect to the maximum principal compressive stress and the conditions of differential stress. Model predictions compare well with published field outcrop data, confirming that this model produces realistic damage zone geometries

    Metronidazole (Flagyl): characterization as a cytotoxic drug specific for hypoxic tumour cells.

    Get PDF
    The cytocidal properties of metronidazole against hypoxic mammalian cells are described. This chemotherapeutic action has been shown to be dependent on drug concentration and duration of exposure. The x-ray TCD50 for a murine anaplastic carcinoma was reduced from 6081 rad to 4643 rad when animals were given metronidazole orally for 36 h before radiation treatment. The effect is attributed to the direct killing of hypoxic tumour cells by a mechanism analogous to that proposed for the action of the drug on anaerobic micro-organisms. It is concluded that further work with metronidazole as a cytotoxin specific for hypoxic cells is warranted, particularly in view of the reported lack of toxicity associated with the preliminary clinical use of the drug as a radiosensitizer in man

    Follow the Plume: Organic Molecules and Habitable Conditions in the Subsurface Ocean of Enceladus

    Get PDF
    This white paper describes the astrobiological significance of the Enceladus plume, and makes a series of scientific and technological recommendations that would lead to a future mission that samples and analyzes plume materials, and searches for evidence of life

    Combined analysis of solar neutrino and solar irradiance data: further evidence for variability of the solar neutrino flux and its implications concerning the solar core

    Full text link
    A search for any particular feature in any single solar neutrino dataset is unlikely to establish variability of the solar neutrino flux since the count rates are very low. It helps to combine datasets, and in this article we examine data from both the Homestake and GALLEX experiments. These show evidence of modulation with a frequency of 11.85 yr-1, which could be indicative of rotational modulation originating in the solar core. We find that precisely the same frequency is prominent in power spectrum analyses of the ACRIM irradiance data for both the Homestake and GALLEX time intervals. These results suggest that the solar core is inhomogeneous and rotates with sidereal frequency 12.85 yr-1. We find, by Monte Carlo calculations, that the probability that the neutrino data would by chance match the irradiance data in this way is only 2 parts in 10,000. This rotation rate is significantly lower than that of the inner radiative zone (13.97 yr-1) as recently inferred from analysis of Super-Kamiokande data, suggesting that there may be a second, inner tachocline separating the core from the radiative zone. This opens up the possibility that there may be an inner dynamo that could produce a strong internal magnetic field and a second solar cycle.Comment: 22 pages, 9 tables, 10 figure

    Primary Production and Carbon Allocation in Creosotebush

    Get PDF

    Further Evidence Suggestive of a Solar Influence on Nuclear Decay Rates

    Full text link
    Recent analyses of nuclear decay data show evidence of variations suggestive of a solar influence. Analyses of datasets acquired at the Brookhaven National Laboratory (BNL) and at the Physikalisch-Technische Bundesanstalt (PTB) both show evidence of an annual periodicity and of periodicities with sidereal frequencies in the neighborhood of 12.25 year^{-1} (at a significance level that we have estimated to be 10^{-17}). It is notable that this implied rotation rate is lower than that attributed to the solar radiative zone, suggestive of a slowly rotating solar core. This leads us to hypothesize that there may be an "inner tachocline" separating the core from the radiative zone, analogous to the "outer tachocline" that separates the radiative zone from the convection zone. The Rieger periodicity (which has a period of about 154 days, corresponding to a frequency of 2.37 year^{-1}) may be attributed to an r-mode oscillation with spherical-harmonic indices l=3, m=1, located in the outer tachocline. This suggests that we may test the hypothesis of a solar influence on nuclear decay rates by searching BNL and PTB data for evidence of a "Rieger-like" r-mode oscillation, with l=3, m=1, in the inner tachocline. The appropriate search band for such an oscillation is estimated to be 2.00-2.28 year^{-1}. We find, in both datasets, strong evidence of a periodicity at 2.11 year^{-1}. We estimate that the probability of obtaining these results by chance is 10^{-12}.Comment: 12 pages, 6 figures, v2 has a color corrected Fig 6, a corrected reference, and a corrected typ
    corecore