65 research outputs found

    Probiotics action on gliadin sequences relevant to gluten sensitivity

    Get PDF
    The Celiac disease in genetically predisposed individuals is mainly induced by specific repetitive sequences in gliadins (PQPYP). This autoimmune disease stems from the interaction between toxic sequences and lamina propria cells, that is relevant also to other forms of gluten sensitivity. Specific endo-esoprolinase were isolated from lactic acid bacteria, suggesting possible practical applications. The ability of some probiotics at removing "toxic" celiac sequences was investigated, at first by assessing the presence and level of endo- and eso-prolinase activity in some of the most popular probiotic bacteria. Significant activities were detected in Lactobacillus and Bifidum species, as well as in the probiotic Escherichia coli Niessle 1917. On the basis of prolinase data, we investigated by mass spectroscopy the removal of "toxic" sequences in gliadin. A complete disappearance of these sequences was observed only with Escherichia coli Niessle 1917. Among the Bifidus and Lactobacillus species, only B. bifidum MIMBb23SG and L. acidophilus LA5 showed a significant decrease in the "toxic" sequences. All together, this study suggests a potential use of lactic bacteria to lower gluten response in sensitive individuals, including celiacs and gluten-sensitive

    Evidence of dysbiosis in the intestinal microbial ecosystem of children and adolescents with primary hyperlipidemia and the potential role of regular hazelnut intake

    Get PDF
    Hyperlipidemia starts at a pediatric age and represents an unquestionable risk factor for cardiovascular disease. Modulation of the intestinal microbial ecosystem (IME), in principle, can ameliorate lipid profiles. In this study, we characterized the IME of children and adolescents with primary hyperlipidemia by analyzing fecal samples through 16S rRNA gene profiling (n\ua0=\ua015) and short chain fatty acid (SCFA) quantification (n\ua0=\ua032). The same analyses were also carried out on age-matched normolipidemic controls (n\ua0=\ua015). Moreover, we evaluated the modulatory effect of regular hazelnut intake (approximately 0.43 g of hazelnuts with skin per kg of body weight) on the IME of 15 children and adolescents with hyperlipidemia for eight weeks. We found alterations of numerous operational taxonomic units potentially associated with SCFA-producing bacteria and reductions in the fecal levels of acetate, butyrate and propionate in hyperlipidemic subjects. Furthermore, we observed that an eight-week hazelnut intervention may induce limited changes in fecal microbiota composition but can significantly modulate the fecal levels of predominant intestinal SCFAs, such as acetate. Finally, correlation analyses indicated that changes in lipidemic parameters are linked to modifications of the abundance of specific bacterial taxa, such as the families Lachnospiraceae and Ruminococcaceae and the genera Akkermansia, Bacteroides, Roseburia, and Faecalibacterium. This study suggests that children and adolescents with primary hyperlipidemia possess an altered IME. The promising results presented here support the need for future dietary interventions aimed at positively modulating the IME of hyperlipidemic subjects

    Modulation of fecal clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults

    Get PDF
    Background: The modulation of gut microbiota is considered to be the first target to establish probiotic efficacy in a healthy population. Objective: This study was conducted to determine the impact of a probiotic on the intestinal microbial ecology of healthy volunteers. Methods: High-throughput 16S ribosomal RNA gene sequencing was used to characterize the fecal microbiota in healthy adults (23-55 y old) of both sexes, before and after 4 wk of daily consumption of a capsule containing at least 24 billion viable Lactobacillus paracasei DG cells, according to a randomized, double-blind, crossover placebo-controlled design. Results: Probiotic intake induced an increase in Proteobacteria (P = 0.006) and in the Clostridiales genus Coprococcus (P = 0.009), whereas the Clostridiales genus Blautia (P = 0.036) was decreased; a trend of reduction was also observed for Anaerostipes (P = 0.05) and Clostridium (P = 0.06). We also found that the probiotic effect depended on the initial butyrate concentration. In fact, participants with butyrate >100 mmol/kg of wet feces had a mean butyrate reduction of 49 ± 21% and a concomitant decrease in the sum of 6 Clostridiales genera, namely Faecalibacterium, Blautia, Anaerostipes, Pseudobutyrivibrio, Clostridium, and Butyrivibrio (P = 0.021), after the probiotic intervention. In contrast, in participants with initial butyrate concentrations <25 mmol/kg of wet feces, the probiotic contributed to a 329 ± 255% (mean ± SD) increment in butyrate concomitantly with an ~55% decrease in Ruminococcus (P = 0.016) and a 150% increase in an abundantly represented unclassified Bacteroidales genus (P = 0.05). Conclusions: The intake of L. paracasei DG increased the Blautia:Coprococcus ratio, which, according to the literature, can potentially confer a health benefit on the host. The probiotic impact on themicrobiota and on short-chain fatty acids, however, seems to strictly depend on the initial characteristics of the intestinal microbial ecosystem. In particular, fecal butyrate concentrations could represent an important biomarker for identifying subjects who may benefit from probiotic treatment

    A novel rhamnose-rich hetero-exopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells

    Get PDF
    Lactobacillus paracasei DG is a bacterial strain with recognized probiotic properties and is used in commercial probiotic products. However, the mechanisms underlying its probiotic properties are mainly unknown. In this study, we tested the hypothesis that the capability of strain DG to interact with the host is, at least partly, associated with its ability to synthesize a surface-associated exopolysaccharide (EPS). Comparative genomics revealed the presence of putative EPS gene clusters in DG genome; accordingly, EPS was isolated from the surface of the bacterium. A sample of the pure EPS from strain DG (DG-EPS), upon NMR and chemical analyses, was shown to be a novel branched hetero-EPS with a repeat unit composed of L-rhamnose, D-galactose, and N-acetyl-D-galactosamine in a ratio of 4:1:1. Subsequently, we demonstrated that the DG-EPS displays immunostimulating properties by enhancing the gene expression of the pro-inflammatory cytokines TNF-α and IL-6, and, particularly, the chemokines IL-8 and CCL20 in the THP-1 human monocytic cell line. In contrast, the expression of the cyclooxygenase enzyme COX-2 was not affected. In conclusion, the DG-EPS is a bacterial macromolecule with the potential ability to boost the immune system as either a secreted molecule released from the bacterium or as a capsular envelope on the bacterial cell wall. This study provides additional information about the mechanisms supporting the cross-talk between L. paracasei DG and the host

    Apolipoprotein C-II deficiency: detection of immunoreactive apolipoprotein C-II in the intestinal mucosa of two patients

    Get PDF
    Recent data suggest that mutant immunoreactive forms of apolipoprotein C-II (apoC-II) can be detected in the plasma of patients with the apoC-II deficiency syndrome. We studied the possible presence of apoC-II mutants in the plasma of two patients with apoC-II deficiency by immunological means. The patients were hypertriglyceridemic, and apoC-II was undetectable in plasma as determined by radial immunodiffusion, electroimmunoassay, and immunonephelometry. Furthermore, apoC-II was undetectable either by electrophoresis or by immunoblotting in the plasma of the probands, while apoC-II was present in the plasma of their parents, although at less than half-normal concentration. Immunochemical localization of apoC-II, however, showed that the apoprotein could be detected within the enterocytes obtained from the intestinal mucosa of the patients. From these data we conclude that the patients synthesize apoC-II, at least in the intestine

    Consumption of a bifidobacterium bifidum strain for 4 weeks modulates dominant intestinal bacterial taxa and fecal butyrate in healthy adults

    Get PDF
    Modulation of the intestinal microbial ecosystem (IME) is a useful target to establish probiotic efficacy in a healthy population. We conducted a randomized, double-blind, crossover, and placebo-controlled intervention study to determine the impact of Bifidobacterium bifidum strain Bb on the IME of adult healthy volunteers of both sexes. High-throughput 16S rRNA gene sequencing was used to characterize the fecal microbiota before and after 4 weeks of daily probiotic cell consumption. The intake of approximately one billion live B. bifidum cells affected the relative abundance of dominant taxa in the fecal microbiota and modulated fecal butyrate levels. Specifically, Prevotellaceae (P = 0.041) and Prevotella (P = 0.034) were significantly decreased, whereas Ruminococcaceae (P = 0.039) and Rikenellaceae (P = 0.010) were significantly increased. We also observed that the probiotic intervention modulated the fecal concentrations of butyrate in a manner dependent on the initial levels of short-chain fatty acids (SCFAs). In conclusion, our study demonstrates that a single daily administration of Bifidobacterium bifidum strain Bb can significantly modify the IME in healthy (not diseased) adults. These findings demonstrate the need to reassess the notion that probiotics do not influence the complex and stable IME of a healthy individual

    Effects of Dietary Fibers on Short-Chain Fatty Acids and Gut Microbiota Composition in Healthy Adults: A Systematic Review

    Get PDF
    There is an increasing interest in investigating dietary strategies able to modulate the gut microbial ecosystem which, in turn, may play a key role in human health. Dietary fibers (DFs) are widely recognized as molecules with prebiotic effects. The main objective of this systematic review was to: (i) analyze the results available on the impact of DF intervention on short chain fatty acids (SCFAs) production; (ii) evaluate the interplay between the type of DF intervention, the gut microbiota composition and its metabolic activities, and any other health associated outcome evaluated in the host. To this aim, initially, a comprehensive database of literature on human intervention studies assessing the effect of confirmed and candidate prebiotics on the microbial ecosystem was developed. Subsequently, studies performed on DFs and analyzing at least the impact on SCFA levels were extracted from the database. A total of 44 studies from 42 manuscripts were selected for the analysis. Among the different types of fiber, inulin was the DF investigated the most (n = 11). Regarding the results obtained on the ability of fiber to modulate total SCFAs, seven studies reported a significant increase, while no significant changes were reported in five studies, depending on the analytical methodology used. A total of 26 studies did not show significant differences in individual SCFAs, while the others reported significant differences for one or more SCFAs. The effect of DF interventions on the SCFA profile seemed to be strictly dependent on the dose and the type and structure of DFs. Overall, these results underline that, although affecting microbiota composition and derived metabolites, DFs do not produce univocal significant increase in SCFA levels in apparently healthy adults. In this regard, several factors (i.e., related to the study protocols and analytical methods) have been identified that could have affected the results obtained in the studies evaluated. Future studies are needed to better elucidate the relationship between DFs and gut microbiota in terms of SCFA production and impact on health-related markers

    Immunomodulatory effect of a wild blueberry anthocyanin-rich extract in human Caco-2 intestinal cells

    Get PDF
    Intestinal inflammation is a natural process crucial for the maintenance of gut functioning. However, abnormal or prolonged inflammatory responses may lead to the onset of chronic degenerative diseases, typically treated by means of pharmacological interventions. Dietary strategies for the prevention of inflammation are a safer alternative to pharmacotherapy. Anthocyanins and other polyphenols have been documented to display anti-inflammatory activity. In the present study, three bioactive fractions (anthocyanin, phenolic, and water-soluble fractions) were extracted from a wild blueberry powder. The Caco-2 intestinal model was used to test the immunomodulatory effect of the above fractions. Only the anthocyanin-rich fraction reduced the activation of NF-\u3baB, induced by IL-1\u3b2 in intestinal epithelial Caco-2 cells. Specifically, concentrations of 50 and 100 \u3bcg mL(-1) decreased NF-\u3baB activation by 68.9 and 85.2%, respectively (p 64 0.05). These preliminary results provide further support for the role of food bioactives as potential dietary anti-inflammatory agents

    Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions

    Get PDF
    Bifidobacteria represent one of the dominant groups of microorganisms colonizing the human infant intestine. Commensal bacteria that interact with a eukaryotic host are believed to express adhesive molecules on their cell surface that bind to specific host cell receptors or soluble macromolecules. Whole-genome transcription profiling of Bifidobacterium bifidum PRL2010, a strain isolated from infant stool, revealed a small number of commonly expressed extracellular proteins, among which were genes that specify sortase-dependent pili. Expression of the coding sequences of these B. bifidum PRL2010 appendages in nonpiliated Lactococcus lactis enhanced adherence to human enterocytes through extracellular matrix protein and bacterial aggregation. Furthermore, such piliated L. lactis cells evoked a higher TNF-α response during murine colonization compared with their nonpiliated parent, suggesting that bifidobacterial sortase-dependent pili not only contribute to adherence but also display immunomodulatory activity

    Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions

    Get PDF
    Bifidobacteria represent one of the dominant groups of microorganisms colonizing the human infant intestine. Commensal bacteria that interact with a eukaryotic host are believed to express adhesive molecules on their cell surface that bind to specific host cell receptors or soluble macromolecules. Whole-genome transcription profiling of Bifidobacterium bifidum PRL2010, a strain isolated from infant stool, revealed a small number of commonly expressed extracellular proteins, among which were genes that specify sortase-dependent pili. Expression of the coding sequences of these B. bifidum PRL2010 appendages in nonpiliated Lactococcus lactis enhanced adherence to human enterocytes through extracellular matrix protein and bacterial aggregation. Furthermore, such piliated L. lactis cells evoked a higher TNF-\u3b1 response during murine colonization compared with their nonpiliated parent, suggesting that bifidobacterial sortase-dependent pili not only contribute to adherence but also display immunomodulatory activity
    • …
    corecore