151 research outputs found

    Spasmolytic Effects of Aphanizomenon Flos Aquae (AFA) Extract on the Human Colon Contractility.

    Get PDF
    The blue-green algae Aphanizomenon flos aquae (AFA), rich in beneficial nutrients, exerts various beneficial effects, acting in different organs including the gut. KlaminÂź is an AFA extract particularly rich in -PEA, a trace-amine considered a neuromodulator in the central nervous system. To date, it is not clear if -PEA exerts a role in the enteric nervous system. The aims of the present study were to investigate the effects induced by KlaminÂź on the human distal colon mechanical activity, to analyze the mechanism of action, and to verify a -PEA involvement. The organ bath technique, RT-PCR, and immunohistochemistry (IHC) were used. KlaminÂź reduced, in a concentration-dependent manner, the amplitude of the spontaneous contractions. EPPTB, a traceamine receptor (TAAR1) antagonist, significantly antagonized the inhibitory effects of both KlaminÂź and exogenous -PEA, suggesting a trace-amine involvement in the KlaminÂź effects. Accordingly, AphaMaxÂź, an AFA extract containing lesser amount of -PEA, failed to modify colon contractility. Moreover, the KlaminÂź effects were abolished by tetrodotoxin, a neural blocker, but not by L-NAME, a nitric oxide-synthase inhibitor. On the contrary methysergide, a serotonin receptor antagonist, significantly antagonized the KlaminÂź effects, as well as the contractility reduction induced by 5-HT. The RT-PCR analysis revealed TAAR1 gene expression in the colon and the IHC experiments showed that 5-HT-positive neurons are co-expressed with TAAR1 positive neurons. In conclusion, the results of this study suggest that KlaminÂź exerts spasmolytic effects in human colon contractility through -PEA, that, by activating neural TAAR1, induce serotonin release from serotoninergic neurons of the myenteric plexus

    Atypical Bacterial Pathogens and Small-Vessel Leukocytoclastic Vasculitis of the Skin in Children: Systematic Literature Review.

    Get PDF
    Leukocytoclastic small-vessel vasculitis of the skin (with or without systemic involvement) is often preceded by infections such as common cold, tonsillopharyngitis, or otitis media. Our purpose was to document pediatric (≀18 years) cases preceded by a symptomatic disease caused by an atypical bacterial pathogen. We performed a literature search following the Preferred Reporting of Systematic Reviews and Meta-Analyses guidelines. We retained 19 reports including 22 cases (13 females and 9 males, 1.0 to 17, median 6.3 years of age) associated with a Mycoplasma pneumoniae infection. We did not find any case linked to Chlamydophila pneumoniae, Chlamydophila psittaci, Coxiella burnetii, Francisella tularensis, or Legionella pneumophila. Patients with a systemic vasculitis (N = 14) and with a skin-limited (N = 8) vasculitis did not significantly differ with respect to gender and age. The time to recovery was ≀12 weeks in all patients with this information. In conclusion, a cutaneous small-vessel vasculitis with or without systemic involvement may occur in childhood after an infection caused by the atypical bacterial pathogen Mycoplasma pneumoniae. The clinical picture and the course of cases preceded by recognized triggers and by this atypical pathogen are indistinguishable

    Kidney tubular injury induced by valproic acid: systematic literature review.

    Get PDF
    BACKGROUND Valproic acid is prescribed for epilepsy and as prophylaxis for bipolar disorder and migraine headaches. It has also been implicated as a cause of a kidney tubular injury. METHODS We undertook a review of the literature to characterize the biochemical and histopathological features of the overt kidney tubular injury and to evaluate the possible existence of a pauci-symptomatic injury. The pre-registered review (CRD42022360357) was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. Searches were conducted in Excerpta Medica, the National Library of Medicine, and Web of Science. The gray literature was also considered. RESULTS For the final analysis, we retained 36 articles: 28 case reports documented 48 individuals with epilepsy on valproic acid for 7 months or more and presenting with features consistent with an overt kidney tubular injury. The following disturbances were noted: hypophosphatemia (N = 46), normoglycemic glycosuria (N = 46), total proteinuria (N = 45), metabolic acidosis (N = 36), hypouricemia (N = 27), tubular proteinuria (N = 27), hypokalemia (N = 23), and hypocalcemia (N = 8). A biopsy, obtained in six cases, disclosed altered proximal tubular cells with giant and dysmorphic mitochondria. Eight case series addressed the existence of a pauci- or even asymptomatic kidney injury. In the reported 285 subjects on valproic acid for 7 months or more, an isolated tubular proteinuria, mostly N-acetyl-ÎČ-glucosaminidase, was often noted. CONCLUSIONS Valproic acid may induce an overt kidney tubular injury, which is associated with a proximal tubular mitochondrial toxicity. Treatment for 7 months or more is often associated with a pauci- or oligosymptomatic kidney tubular injury. A higher resolution version of the Graphical abstract is available as Supplementary information

    Measurements of the reaction pˉp→ϕη\bar{p}p \to \phi \eta of antiproton annihilation at rest at three hydrogen target densities

    Full text link
    The proton-antiproton annihilation at rest into the ϕη\phi\eta final state was measured for three different target densities: liquid hydrogen, gaseous hydrogen at NTP and at a low pressure of 5 mbar. The yield of this reaction in the liquid hydrogen target is smaller than in the low-pressure gas target. The branching ratios of the ϕη\phi\eta channel were calculated on the basis of simultaneous analysis of the three data samples. The branching ratio for annihilation into ϕη\phi\eta from the 3S1^3S_1 protonium state turns out to be about ten times smaller as compared to the one from the 1P1^1P_1 state.Comment: 10 pages, 3 Postscript figures. Accepted by Physics Letters

    Patterns of clinical presentation of adult coeliac disease in a rural setting

    Get PDF
    BACKGROUND: In recent years there has been increasing recognition that the pattern of presentation of coeliac disease may be changing. The classic sprue syndrome with diarrhoea and weight loss may be less common than the more subtle presentations of coeliac disease such as an isolated iron deficiency anaemia. As a result, the diagnosis of this treatable condition is often delayed or missed. Recent serologic screening tests allow non-invasive screening to identify most patients with the disease and can be applied in patients with even subtle symptoms indicative of coeliac disease. Both benign and malignant complications of coeliac disease can be avoided by early diagnosis and a strict compliance with a gluten free diet. AIM: The aim of this study is to evaluate the trends in clinical presentation of patients diagnosed with adult coeliac disease. In addition, we studied the biochemical and serological features and the prevalence of associated conditions in patients with adult coeliac disease. METHODS: This is an observational, retrospective, cross-sectional review of the medical notes of 32 adult patients attending the specialist coeliac clinic in a district general hospital. RESULTS: Anaemia was the most common mode of presentation accounting for 66% of patients. Less than half of the patients had any of the classical symptoms of coeliac disease and 25% had none of the classical symptoms at presentation. Anti-gliadin antibodies, anti-endomysial antibody and anti-tissue transglutaminase showed 75%, 68% and 90% sensitivity respectively. In combination, serology results were 100% sensitive as screening tests for adult coeliac disease. Fifty nine percent patients had either osteoporosis or osteopenia. There were no malignant complications observed during the follow up of our patients. CONCLUSION: Most adults with coeliac disease have a sub clinical form of the disease and iron deficiency anaemia may be its sole presenting symptom. Only a minority of adult coeliac disease patients present with classical mal-absorption symptoms of diarrhoea and weight loss. Patients with atypical form of disease often present initially to hospital specialists other than a gastro-enterologist. An awareness of the broad spectrum of presentations of adult coeliac disease, among doctors both in primary care and by the various hospital specialists in secondary care, is necessary to avoid delays in diagnosis. It is important to include serological screening tests for coeliac disease systematically in the evaluation of adult patients with unexplained iron deficiency anaemia or unexplained gastro-intestinal symptoms and in those who are considered to be at increased risk for coeliac disease

    Study of the f(0)(1500)/f(2)(1565) production in the exclusive annihilation anti-n.anti-p -> pi+.pi+.pi- in flight

    Get PDF
    The spin-parity analysis of the (n) over bar p --> pi(+)pi(+)pi(-) exclusive reaction in flight is presented. The main aim is to study the (pi(+)pi(-)) invariant mass spectrum in the region around 1500 MeV. The analysis was performed with a Breit-Wigner parametrization for all the resonant states and, for the scalar sector in the mass region below 1.2 GeV, by means of a K-matrix-like treatment. It clearly shows the need for two states, a scalar one (0(++)) with mass and width (1522+/-25) MeV and (108+/-33) MeV, and a tensorial one (2(++)) with mass (1575 +/-18) MeV and width (119+/-24) MeV, respectively. In addition, the analysis requires the presence of a scalar state at (1280+/-55) MeV, (323+/-13) MeV broad, and of a second vectorial one, in addition to the rho(0)(770) signal, with mass and width (1348+/-33) MeV and (275+/-10) MeV, respectively

    A hierarchical network approach for modeling Rift Valley fever epidemics with applications in North America

    Get PDF
    Rift Valley fever is a vector-borne zoonotic disease which causes high morbidity and mortality in livestock. In the event Rift Valley fever virus is introduced to the United States or other non-endemic areas, understanding the potential patterns of spread and the areas at risk based on disease vectors and hosts will be vital for developing mitigation strategies. Presented here is a general network-based mathematical model of Rift Valley fever. Given a lack of empirical data on disease vector species and their vector competence, this discrete time epidemic model uses stochastic parameters following several PERT distributions to model the dynamic interactions between hosts and likely North American mosquito vectors in dispersed geographic areas. Spatial effects and climate factors are also addressed in the model. The model is applied to a large directed asymmetric network of 3,621 nodes based on actual farms to examine a hypothetical introduction to some counties of Texas, an important ranching area in the United States of America (U.S.A.). The nodes of the networks represent livestock farms, livestock markets, and feedlots, and the links represent cattle movements and mosquito diffusion between different nodes. Cattle and mosquito (Aedes and Culex) populations are treated with different contact networks to assess virus propagation. Rift Valley fever virus spread is assessed under various initial infection conditions (infected mosquito eggs, adults or cattle). A surprising trend is fewer initial infectious organisms result in a longer delay before a larger and more prolonged outbreak. The delay is likely caused by a lack of herd immunity while the infections expands geographically before becoming an epidemic involving many dispersed farms and animals almost simultaneously

    Exploring the Role of Explicit and Implicit Self-Esteem and Self-Compassion in Anxious and Depressive Symptomatology Following Acquired Brain Injury

    Full text link
    [EN] Objectives Acquired brain injury (ABI) can lead to the emergence of several disabilities and is commonly associated with high rates of anxiety and depression symptoms. Self-related constructs, such as self-esteem and self-compassion, might play a key role in this distressing symptomatology. Low explicit (i.e., deliberate) self-esteem is associated with anxiety and depression after ABI. However, implicit (i.e., automatic) self-esteem, explicit-implicit self-discrepancies, and self-compassion could also significantly contribute to this symptomatology. The purpose of the present study was to examine whether implicit self-esteem, explicit-implicit self-discrepancy (size and direction), and self-compassion are related to anxious and depressive symptoms after ABI in adults, beyond the contribution of explicit self-esteem. Methods The sample consisted 38 individuals with ABI who were enrolled in a long-term rehabilitation program. All participants completed the measures of explicit self-esteem, implicit self-esteem, self-compassion, anxiety, and depression. Pearson's correlations and hierarchical regression models were calculated. Results Findings showed that both self-compassion and implicit self-esteem negatively accounted for unique variance in anxiety and depression when controlling for explicit self-esteem. Neither the size nor direction of explicit-implicit self-discrepancy was significantly associated with anxious or depressive symptomatology. Conclusions The findings suggest that the consideration of self-compassion and implicit self-esteem, in addition to explicit self-esteem, contributes to understanding anxiety and depression following ABI.Lorena Desdentado is supported by a FPU doctoral scholarship (FPU18/01690) from the Spanish Ministry of Universities. This work was supported by CIBEROBN, an initiative of the ISCIII (ISC III CB06 03/0052).Desdentado, L.; Cebolla, A.; Miragall, M.; Llorens RodrĂ­guez, R.; Navarro, MD.; Baños, RM. (2021). Exploring the Role of Explicit and Implicit Self-Esteem and Self-Compassion in Anxious and Depressive Symptomatology Following Acquired Brain Injury. Mindfulness. 12(4):899-910. https://doi.org/10.1007/s12671-020-01553-wS899910124Anson, K., & Ponsford, J. (2006). Coping and emotional adjustment following traumatic brain injury. The Journal of Head Trauma Rehabilitation, 21(3), 248–259. https://doi.org/10.1097/00001199-200605000-00005.Baños, R. M., & GuillĂ©n, V. (2000). Psychometric characteristics in normal and social phobic samples for a Spanish version of the Rosenberg Self-Esteem Scale. Psychological Reports, 87(1), 269–274. https://doi.org/10.2466/pr0.2000.87.1.269.Beadle, E. J., Ownsworth, T., Fleming, J., & Shum, D. (2016). The impact of traumatic brain injury on self-identity: a systematic review of the evidence for self-concept changes. The Journal of Head Trauma Rehabilitation, 31(2), E12–E25. https://doi.org/10.1097/HTR.0000000000000158.Beck, A. T. (1979). Cognitive therapy of depression. New York: Guilford Press.Beevers, C. G. (2005). Cognitive vulnerability to depression: A dual process model. Clinical Psychology Review, 25(7), 975–1002. https://doi.org/10.1016/j.cpr.2005.03.003.Bos, A. E. R., Huijding, J., Muris, P., Vogel, L. R. R., & Biesheuvel, J. (2010). Global, contingent and implicit self-esteem and psychopathological symptoms in adolescents. Personality and Individual Differences, 48(3), 311–316. https://doi.org/10.1016/j.paid.2009.10.025.Bowerman, B. L., & O’Connell, R. T. (1990). Linear statistical models: An applied approach (2nd ed.). Belmont, CA: Duxbury.Brenner, R. E., Heath, P. J., Vogel, D. L., & CredĂ©, M. (2017). Two is more valid than one: examining the factor structure of the self-compassion scale (SCS). Journal of Counseling Psychology, 64(6), 696–707. https://doi.org/10.1037/cou0000211.Brysbaert, M. (2019). How many participants do we have to include in properly powered experiments? A tutorial of power analysis with reference tables. Journal of Cognition, 2(1), 1–38. https://doi.org/10.5334/joc.72.Carroll, E., & Coetzer, R. (2011). Identity, grief and self-awareness after traumatic brain injury. Neuropsychological Rehabilitation, 21(3), 289–305. https://doi.org/10.1080/09602011.2011.555972.Corrigan, P. W., & Watson, A. C. (2002). The paradox of self-stigma and mental illness. Clinical Psychology: Science and Practice, 9(1), 35–53. https://doi.org/10.1093/clipsy/9.1.35.Creemers, D. H. M., Scholte, R. H. J., Engels, R. C. M. E., Prinstein, M. J., & Wiers, R. W. (2012). Implicit and explicit self-esteem as concurrent predictors of suicidal ideation, depressive symptoms, and loneliness. Journal of Behavior Therapy and Experimental Psychiatry, 43(1), 638–646. https://doi.org/10.1016/j.jbtep.2011.09.006.Creemers, D. H. M., Scholt, R. H. J., Engels, R. C. M. E., Prinstein, M. J., & Wiers, R. W. (2013). Damaged self-esteem is associated with internalizing problems. Frontiers in Psychology, 4, 152. https://doi.org/10.3389/fpsyg.2013.00152.Curvis, W., Simpson, J., & Hampson, N. (2018). Factors associated with self-esteem following acquired brain injury in adults: a systematic review. Neuropsychological Rehabilitation, 28(1), 142–183. https://doi.org/10.1080/09602011.2016.1144515.Elbaum, J., & Benson, D. (Eds.). (2007). Acquired brain injury: an integrative neuro-rehabilitation approach. New York: Springer. https://doi.org/10.1007/978-0-387-37575-5.Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149.FEDACE. (2015). Las personas con daño cerebral adquirido en España. Ministerio de Sanidad, Servicios Sociales e Igualdad. Retrieved May 21, 2020, from: https://fedace.org/index.php?V_dir=MSC&V_mod=download&f=2016-9/26-16-4-11.admin.Informe_FEDACE_RPD_para_DDC-1.pdf.Feigin, V. L., Forouzanfar, M. H., Krishnamurthi, R., Mensah, G. A., Connor, M., Bennett, D. A., Moran, A. E., Sacco, R. L., Anderson, L., Truelsen, T., O’Donnell, M., Venketasubramanian, N., Barker-Collo, S., Lawes, C. M. M., Wang, W., Shinohara, Y., Witt, E., Ezzati, M., & Naghavi, M. (2014). Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. The Lancet, 383(9913), 245–254. https://doi.org/10.1016/S0140-6736(13)61953-4.Fennell, M. J. V. (1997). Low self-esteem: a cognitive perspective. Behavioural and Cognitive Psychotherapy, 25(1), 1–26. https://doi.org/10.1017/s1352465800015368.Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. https://doi.org/10.1016/0022-3956(75)90026-6.Garcia-Campayo, J., Navarro-Gil, M., AndrĂ©s, E., Montero-Marin, J., LĂłpez-Artal, L., Marcos, M., & Demarzo, P. (2014). Validation of the Spanish versions of the long (26 items) and short (12 items) forms of the Self-Compassion Scale (SCS). Health and Quality of Life Outcomes, 12(4). https://doi.org/10.1186/1477-7525-12-4.GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. (2018). Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(1), 56–87. https://doi.org/10.1016/S1474-4422(18)30415-0.Gould, K. R., Ponsford, J. L., Johnston, L., & Schönberger, M. (2011). Relationship between psychiatric disorders and 1-year psychosocial outcome following traumatic brain injury. The Journal of Head Trauma Rehabilitation, 26(1), 79–89. https://doi.org/10.1097/HTR.0b013e3182036799.Gracey, F., Palmer, S., Rous, B., Psaila, K., Shaw, K., O’Dell, J., Cope, J., & Mohamed, S. (2008). “Feeling part of things”: personal construction of self after brain injury. Neuropsychological Rehabilitation, 18(5–6), 627–650. https://doi.org/10.1080/09602010802041238.Gracey, F., Evans, J. J., & Malley, D. (2009). Capturing process and outcome in complex rehabilitation interventions: a “Y-shaped” model. Neuropsychological Rehabilitation, 19(6), 867–890. https://doi.org/10.1080/09602010903027763.Greenwald, A. G., & Farnham, S. D. (2000). Using the Implicit Association Test to measure self-esteem and self-concept. Journal of Personality and Social Psychology, 79(6), 1022–1038. https://doi.org/10.1037/0022-3514.79.6.1022.Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. K. (1998). Measuring individual differences in implicit cognition: the Implicit Association Test. Journal of Personality and Social Psychology, 74(6), 1464–1480. https://doi.org/10.1037/0022-3514.74.6.1464.Greenwald, A. G., Nosek, B. A., & Banaji, M. R. (2003). Understanding and using the Implicit Association Test: I. An improved scoring algorithm. Journal of Personality and Social Psychology, 85(2), 197–216. https://doi.org/10.1037/0022-3514.85.2.197.Hackett, M. L., Yapa, C., Parag, V., & Anderson, C. S. (2005). Frequency of depression after stroke: a systematic review of observational studies. Stroke, 36(6), 1330–1340. https://doi.org/10.1161/01.STR.0000165928.19135.35.Haeffel, G. J., Abramson, L. Y., Brazy, P. C., Shah, J. Y., Teachman, B. A., & Nosek, B. A. (2007). Explicit and implicit cognition: a preliminary test of a dual-process theory of cognitive vulnerability to depression. Behaviour Research and Therapy, 45(6), 1155–1167. https://doi.org/10.1016/j.brat.2006.09.003.Ingram, R. E. (1984). Toward an information-processing analysis of depression. Cognitive Therapy and Research, 8(5), 443–477. https://doi.org/10.1007/BF01173284.Izuma, K., Kennedy, K., Fitzjohn, A., Sedikides, C., & Shibata, K. (2018). Neural activity in the reward-related brain regions predicts implicit self-esteem: a novel validity test of psychological measures using neuroimaging. Journal of Personality and Social Psychology, 114(3), 343–357. https://doi.org/10.1037/pspa0000114.Khan-Bourne, N., & Brown, R. G. (2003). Cognitive behaviour therapy for the treatment of depression in individuals with brain injury. Neuropsychological Rehabilitation, 13(1–2), 89–107. https://doi.org/10.1080/09602010244000318.Kim, H. S., & Moore, M. T. (2019). Symptoms of depression and the discrepancy between implicit and explicit self-esteem. Journal of Behavior Therapy and Experimental Psychiatry, 63, 1–5. https://doi.org/10.1016/j.jbtep.2018.12.001.Lane, K. A., Banaji, M. R., Nosek, B. A., & Greenwald, A. G. (2007). Understanding and using the Implicit Association Test: IV. What we know (so far) about the method. In B. Wittenbrink & N. Schwarz (Eds.), Implicit measures of attitudes (pp. 59–102). New York: The Guildford Press.Leary, M. R., Tate, E. B., Adams, C. E., Batts Allen, A., & Hancock, J. (2007). Self-compassion and reactions to unpleasant self-relevant events: the implications of treating oneself kindly. Personality Processes and Individual Differences, 92(5), 887–904. https://doi.org/10.1037/0022-3514.92.5.887.Lennon, A., Bramham, J., Carroll, À., McElligott, J., Carton, S., Waldron, B., Fortune, D., Burke, T., Fitzhenry, M., & Benson, C. (2014). A qualitative exploration of how individuals reconstruct their sense of self following acquired brain injury in comparison with spinal cord injury. Brain Injury, 28(1), 27–37. https://doi.org/10.3109/02699052.2013.848378.Longworth, C., Deakins, J., Rose, D., & Gracey, F. (2018). The nature of self-esteem and its relationship to anxiety and depression in adult acquired brain injury. Neuropsychological Rehabilitation, 28(7), 1078–1094. https://doi.org/10.1080/09602011.2016.1226185.MacBeth, A., & Gumley, A. (2012). Exploring compassion: a meta-analysis of the association between self-compassion and psychopathology. Clinical Psychology Review, 32(6), 545–552. https://doi.org/10.1016/j.cpr.2012.06.003.McDonald, S., Saad, A., & James, C. (2011). Social dysdecorum following severe traumatic brain injury: loss of implicit social knowledge or loss of control? Journal of Clinical and Experimental Neuropsychology, 33(6), 619–630. https://doi.org/10.1080/13803395.2011.553586.Milne, E., & Grafman, J. (2001). Ventromedial prefrontal cortex lesions in humans eliminate implicit gender stereotyping. The Journal of Neuroscience, 21(12), 1–6.Moors, A., & De Houwer, J. (2006). Automaticity: a theoretical and conceptual analysis. Psychological Bulletin, 132(2), 297–326. https://doi.org/10.1037/0033-2909.132.2.297.Muris, P., & Petrocchi, N. (2017). Protection or vulnerability? A meta-analysis of the relations between the positive and negative components of self-compassion and psychopathology. Clinical Psychology & Psychotherapy, 24(2), 373–383. https://doi.org/10.1002/cpp.2005.Myers, R. (2000). Classical and modern regression with applications (2nd ed.). Belmont, CA: Duxbury.Neff, K. D. (2003). Self-compassion: an alternative conceptualization of a healthy attitude toward oneself. Self and Identity, 2(2), 85–101. https://doi.org/10.1080/15298860309032.Neff, K. D., & Vonk, R. (2009). Self-compassion versus global self-esteem: two different ways of relating to oneself. Journal of Personality, 77, 23–50. https://doi.org/10.1111/j.1467-6494.2008.00537.x.Neff, K. D., TĂłth-KirĂĄly, I., Yarnell, L. M., Arimitsu, K., Castilho, P., Ghorbani, N., Guo, H. X., Hirsch, J. K., Hupfeld, J., Hutz, C. S., Kotsou, I., Lee, W. K., Montero-Marin, J., Sirois, F. M., De Souza, L. K., Svendsen, J. L., Wilkinson, R. B., & Mantzios, M. (2019). Examining the factor structure of the Self-Compassion Scale in 20 diverse samples: support for use of a total score and six subscale scores. Psychological Assessment, 31(1), 27–45. https://doi.org/10.1037/pas0000629.Norton, P. J., & Paulus, D. J. (2017). Transdiagnostic models of anxiety disorder: theoretical and empirical underpinnings. Clinical Psychology Review, 56, 122–137. https://doi.org/10.1016/j.cpr.2017.03.004.Nosek, B. A., & Banaji, M. R. (2001). The go/no-go association task. Social Cognition, 19(6), 625–664. https://doi.org/10.1521/soco.19.6.625.20886.Oddy, M., & Herbert, C. (2003). Intervention with families following brain injury: evidence-based practice. Neuropsychological Rehabilitation, 13(1–2), 259–273. https://doi.org/10.1080/09602010244000345.Ouimet, A. J., Gawronski, B., & Dozois, D. J. A. (2009). Cognitive vulnerability to anxiety: a review and an integrative model. Clinical Psychology Review, 29(6), 459–470. https://doi.org/10.1016/j.cpr.2009.05.004.Ponsford, J., Kelly, A., & Couchman, G. (2014). Self-concept and self-esteem after acquired brain injury: a control group comparison. Brain Injury, 28(2), 146–154. https://doi.org/10.3109/02699052.2013.859733.Raes, F., Pommier, E., Neff, K. D., & Van Gucht, D. (2011). Construction and factorial validation of a short form of the Self-Compassion Scale. Clinical Psychology & Psychotherapy, 18(3), 250–255. https://doi.org/10.1002/cpp.702.Romero, M., SĂĄnchez, A., MarĂ­n, C., Navarro, M. D., Ferri, J., & NoĂ©, E. (2012). Clinical usefulness of the Spanish version of the Mississippi Aphasia Screening Test (MASTsp): validation in stroke patients. NeurologĂ­a (English Edition), 27(4), 216–224. https://doi.org/10.1016/j.nrleng.2011.06.001.Rosenberg, M. (1965). Rosenberg Self-Esteem Scale (RSE). Acceptance and Commitment Therapy. Measures Package, 61, 52 /S0034-98872009000600009.Sandstrom, M. J., & Jordan, R. (2008). Defensive self-esteem and aggression in childhood. Journal of Research in Personality, 42(2), 506–514. https://doi.org/10.1016/j.jrp.2007.07.008.Schönberger, M., & Ponsford, J. (2010). The factor structure of the Hospital Anxiety and Depression Scale in individuals with traumatic brain injury. Psychiatry Research, 179(3), 342–349. https://doi.org/10.1016/j.psychres.2009.07.003.Schröder-AbĂ©, M., Rudolph, A., & SchĂŒtz, A. (2007). High implicit self-esteem is not necessarily advantageous: discrepancies between explicit and implicit self-esteem and their relationship with anger expression and psychological health. European Journal of Personality, 21(3), 319–339. https://doi.org/10.1002/per.626.Scoglio, A. A. J., Rudat, D. A., Garvert, D., Jarmolowski, M., Jackson, C., & Herman, J. L. (2018). Self-compassion and responses to trauma: the role of emotion regulation. Journal of Interpersonal Violence, 33(13), 2016–2036. https://doi.org/10.1177/0886260515622296.Sloan, E., Hall, K., Moulding, R., Bryce, S., Mildred, H., & Staiger, P. K. (2017). Emotion regulation as a transdiagnostic treatment construct across anxiety, depression, substance, eating and borderline personality disorders: a systematic review. Clinical Psychology Review, 57, 141–163. https://doi.org/10.1016/j.cpr.2017.09.002.Smeijers, D., Vrijsen, J. N., van Oostrom, I., Isaac, L., Speckens, A., Becker, E. S., & Rinck, M. (2017). Implicit and explicit self-esteem in remitted depressed patients. Journal of Behavior Therapy and Experimental Psychiatry, 54, 301–306. https://doi.org/10.1016/j.jbtep.2016.10.006.Smith, E. R., & DeCoster, J. (2000). Dual-process models in social and cognitive psychology: conceptual integration and links to underlying memory systems. Personality and Social Psychology Review, 4(2), 108–131. https://doi.org/10.1207/S15327957PSPR0402_01.Sowislo, J. F., & Orth, U. (2013). Does low self-esteem predict depression and anxiety? A meta-analysis of longitudinal studies. Psychological Bulletin, 139(1), 213–240. https://doi.org/10.1037/a0028931.Strack, F., & Deutsch, R. (2004). Reflective and impulsive determinants of social behavior. Personality and Social Psychology Review, 8(3), 220–247. https://doi.org/10.1207/s15327957pspr0803_1.Terol-Cantero, M. C., Cabrera-Perona, V., & MartĂ­n-AragĂłn, M. (2015). Hospital Anxiety and Depression Scale (HADS) review in Spanish samples. Anales de PsicologĂ­a, 31(2), 494–503. https://doi.org/10.6018/analesps.31.2.172701.TĂłth-KirĂĄly, I., & Neff, K. D. (2020). Is self-compassion universal? Support for the measurement invariance of the Self-Compassion Scale across populations. Assessment. Advance online publication. https://doi.org/10.1177/1073191120926232.Turner-Stokes, L., & Wade, D. (2003). Rehabilitation following acquired brain injury: National Clinical Guidelines. Clinical Medicine, 4(1), 61–65. https://doi.org/10.7861/clinmedicine.4-1-61.Tyerman, A., & Humphrey, M. (1984). Changes in self-concept following severe head injury. International Journal of Rehabilitation Research, 7(1), 11–23. https://doi.org/10.1097/00004356-198403000-00002.Valiente, C., Cantero, D., VĂĄzquez, C., Sanchez, Á., Provencio, M., & Espinosa, R. (2011). Implicit and explicit self-esteem discrepancies in paranoia and depression. Journal of Abnormal Psychology, 120(3), 691–699. https://doi.org/10.1037/a0022856.Vickery, C. D., Sepehri, A., & Evans, C. C. (2008). Self-esteem in an acute stroke rehabilitation sample: a control group comparison. Clinical Rehabilitation, 22(2), 179–187. https://doi.org/10.1177/0269215507080142.Whelan-Goodinson, R., Ponsford, J., & Schönberger, M. (2009). Validity of the Hospital Anxiety and Depression Scale to assess depression and anxiety following traumatic brain injury as compared with the Structured Clinical Interview for DSM-IV. Journal of Affective Disorders, 114(1–3), 94–102. https://doi.org/10.1016/j.jad.2008.06.007.Zeigler-Hill, V. (2006). Discrepancies between implicit and explicit self-esteem: Implications for narcissism and self-esteem instability. Journal of Personality, 74(1), 119–144. https://doi.org/10.1111/j.1467-6494.2005.00371.x.Zessin, U., DickhĂ€user, O., & Garbade, S. (2015). The relationship between self-compassion and well-being: a meta-analysis. Applied Psychology. Health and Well-Being, 7(3), 340–364. https://doi.org/10.1111/aphw.12051.Zhang, J. W., Chen, S., & Tomova Shakur, T. K. (2020). From me to you: Self-compassion predicts acceptance of own and others’ imperfections. Personality and Social Psychology Bulletin, 46(2), 228–242. https://doi.org/10.1177/0146167219853846.Zigmond, A. S., & Snaith, R. P. (1983). The Hospital Anxiety and Depression Scale. Acta Psychiatrica Scandinavica, 67(6), 361–370. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x
    • 

    corecore