473 research outputs found

    Applications of active microwave imagery

    Get PDF
    The following topics were discussed in reference to active microwave applications: (1) Use of imaging radar to improve the data collection/analysis process; (2) Data collection tasks for radar that other systems will not perform; (3) Data reduction concepts; and (4) System and vehicle parameters: aircraft and spacecraft

    Novel Reconstruction Mechanism for Dangling-Bond Minimization: Combined Method Surface Structure Determination of SiC(111)-(3×3)

    Get PDF
    The SiC(111)−(3×3) phase was analyzed by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED) holography, density functional theory (DFT), and conventional LEED. A single adatom per unit cell found in STM acts as a beam splitter for the holographic inversion of discrete LEED spot intensities. The resulting 3D image guides the detailed analyses by LEED and DFT which find a Si tetramer on a twisted Si adlayer with cloverlike rings. This twist model with one dangling bond left per unit cell represents a novel (n×n)-reconstruction mechanism of group-IV (111) surfaces

    Molecular dynamics study of accelerated ion-induced shock waves in biological media

    Get PDF
    We present a molecular dynamics study of the effects of carbon- and iron-ion induced shock waves in DNA duplexes in liquid water. We use the CHARMM force field implemented within the MBN Explorer simulation package to optimize and equilibrate DNA duplexes in liquid water boxes of different sizes and shapes. The translational and vibrational degrees of freedom of water molecules are excited according to the energy deposited by the ions and the subsequent shock waves in liquid water are simulated. The pressure waves generated are studied and compared with an analytical hydrodynamics model which serves as a benchmark for evaluating the suitability of the simulation boxes. The energy deposition in the DNA backbone bonds is also monitored as an estimation of biological damage, something which is not possible with the analytical model

    A consistent treatment for pion form factors in space-like and time-like regions

    Get PDF
    We write down some relevant matrix elements for the scattering and decay processes of the pion by considering a quark-meson vertex function. The pion charge and transition form factors FπF_\pi, FπγF_{\pi\gamma}, and FπγF_{\pi\gamma^*} are extracted from these matrix elements using a relativistic quark model on the light-front. We found that, the form factors FπF_\pi and FπγF_{\pi\gamma} in the space-like region agree well with experiment. Furthermore, the branching ratios of all observed decay modes of the neutral pion, that are related to the form factors FπγF_{\pi\gamma} and FπγF_{\pi\gamma^*} in the time-like region, are all consistent with the data as well. Additionally, FπF_\pi in the time-like region, which deals with the nonvalence contribution, is also discussed.Comment: 24 pages, 6 figures, to appear in Phys. Rev.

    Positron-neutrino correlation in the 0^+ \to 0^+ decay of ^{32}Ar

    Get PDF
    The positron-neutrino correlation in the 0+0+β0^+ \to 0^+ \beta decay of 32^{32}Ar was measured at ISOLDE by analyzing the effect of lepton recoil on the shape of the narrow proton group following the superallowed decay. Our result is consistent with the Standard Model prediction. For vanishing Fierz interference we find a=0.9989±0.0052±0.0036a=0.9989 \pm 0.0052 \pm 0.0036, which yields improved constraints on scalar weak interactions

    LEED Holography applied to a complex superstructure: a direct view of the adatom cluster on SiC(111)-(3x3)

    Get PDF
    For the example of the SiC(111)-(3x3) reconstruction we show that a holographic interpretation of discrete Low Energy Electron Diffraction (LEED) spot intensities arising from ordered, large unit cell superstructures can give direct access to the local geometry of a cluster around an elevated atom, provided there is only one such prominent atom per surface unit cell. By comparing the holographic images obtained from experimental and calculated data we illuminate validity, current limits and possible shortcomings of the method. In particular, we show that periodic vacancies such as cornerholes may inhibit the correct detection of the atomic positions. By contrast, the extra diffraction intensity due to slight substrate reconstructions, as for example buckling, seems to have negligible influence on the images. Due to the spatial information depth of the method the stacking of the cluster can be imaged down to the fourth layer. Finally, it is demonstrated how this structural knowledge of the adcluster geometry can be used to guide the dynamical intensity analysis subsequent to the holographic reconstruction and necessary to retrieve the full unit cell structure.Comment: 11 pages RevTex, 6 figures, Phys. Rev. B in pres
    corecore