16 research outputs found

    Historical ecology with real numbers: past and present extent and biomass of an imperiled estuarine habitat

    Get PDF
    Historic baselines are important in developing our understanding of ecosystems in the face of rapid global change. While a number of studies have sought to determine changes in extent of exploited habitats over historic timescales, few have quantified such changes prior to late twentieth century baselines. Here, we present, to our knowledge, the first ever large-scale quantitative assessment of the extent and biomass of marine habitat-forming species over a 100-year time frame. We examined records of wild native oyster abundance in the United States from a historic, yet already exploited, baseline between 1878 and 1935 (predominantly 1885–1915), and a current baseline between 1968 and 2010 (predominantly 2000–2010). We quantified the extent of oyster grounds in 39 estuaries historically and 51 estuaries from recent times. Data from 24 estuaries allowed comparison of historic to present extent and biomass. We found evidence for a 64 per cent decline in the spatial extent of oyster habitat and an 88 per cent decline in oyster biomass over time. The difference between these two numbers illustrates that current areal extent measures may be masking significant loss of habitat through degradation

    Modelling and mapping regional-scale patterns of fishing impact and fish stocks to support coral-reef management in Micronesia

    Get PDF
    Aim: Use a fishery‐independent metric to model and map regional‐scale fishing impact, and demonstrate how this metric assists with modelling current and potential fish biomass to support coral‐reef management. We also examine the relative importance of anthropogenic and natural factors on fishes at biogeographical scales. Location: Reefs of five jurisdictions in Micronesia. Methods: A subset of 1,127 fish surveys (470 surveys) was used to calculate site‐specific mean parrotfish lengths (a proxy for cumulative fishing impact), which were modelled against 20 biophysical and anthropogenic variables. The resulting model was extrapolated to each 1 ha reef cell in the region to generate a fishing impact map. The remaining data (657 surveys) were then used to model fish biomass using 15 response variables, including fishing impact. This model was used to map estimated current regional fish standing stocks and, by setting fishing impact to 0, potential standing stocks. Results: Human population pressure and distance to port were key anthropogenic variables predicting fishing impact. Total fish biomass was negatively correlated with fishing, but the influence of natural gradients of primary productivity, sea surface temperature, habitat quality and larval supply was regionally more important. Main conclusions: Mean parrotfish length appears to be a useful fishery‐independent metric for modelling Pacific fishing impact, but considering environmental covariates is critical. Explicitly modelling fishing impact has multiple benefits, including generation of the first large‐scale map of tropical fishing impacts that can inform conservation planning. Using fishing impact data to map current and potential fish stocks provides further benefits, including highlighting the relative importance of fishing on fish biomass and identifying key biophysical variables that cause maximum potential biomass to vary significantly across the region. Regional‐scale maps of fishing, fish standing stocks and the potential benefits of protection are likely to lead to improved conservation outcomes during reserve network planning

    Evaluating the impact of biodiversity offsetting on native vegetation

    Get PDF
    Biodiversity offsetting is a globally influential policy mechanism for reconciling trade‐offs between development and biodiversity loss. However, there is little robust evidence of its effectiveness. We evaluated the outcomes of a jurisdictional offsetting policy (Victoria, Australia). Offsets under Victoria's Native Vegetation Framework (2002–2013) aimed to prevent loss and degradation of remnant vegetation, and generate gains in vegetation extent and quality. We categorised offsets into those with near‐complete baseline woody vegetation cover (“avoided loss”, 2702 ha) and with incomplete cover (“regeneration”, 501 ha), and evaluated impacts on woody vegetation extent from 2008 to 2018. We used two approaches to estimate the counterfactual. First, we used statistical matching on biophysical covariates: a common approach in conservation impact evaluation, but which risks ignoring potentially important psychosocial confounders. Second, we compared changes in offsets with changes in sites that were not offsets for the study duration but were later enrolled as offsets, to partially account for self‐selection bias (where landholders enrolling land may have shared characteristics affecting how they manage land). Matching on biophysical covariates, we estimated that regeneration offsets increased woody vegetation extent by 1.9%–3.6%/year more than non‐offset sites (138–180 ha from 2008 to 2018) but this effect weakened with the second approach (0.3%–1.9%/year more than non‐offset sites; 19–97 ha from 2008 to 2018) and disappeared when a single outlier land parcel was removed. Neither approach detected any impact of avoided loss offsets. We cannot conclusively demonstrate whether the policy goal of ‘net gain’ (NG) was achieved because of data limitations. However, given our evidence that the majority of increases in woody vegetation extent were not additional (would have happened without the scheme), a NG outcome seems unlikely. The results highlight the importance of considering self‐selection bias in the design and evaluation of regulatory biodiversity offsetting policy, and the challenges of conducting robust impact evaluations of jurisdictional biodiversity offsetting policies

    Ecological impacts of non-native Pacific oysters (Crassostrea gigas) and management measures for protected areas in Europe

    Get PDF
    Pacific oysters are now one of the most ‘globalised’ marine invertebrates. They dominate bivalve aquaculture production in many regions and wild populations are increasingly becoming established, with potential to displace native species and modify habitats and ecosystems. While some fishing communities may benefit from wild populations, there is now a tension between the continued production of Pacific oysters and risk to biodiversity, which is of particular concern within protected sites. The issue of the Pacific oyster therefore locates at the intersection between two policy areas: one concerning the conservation of protected habitats, the other relating to livelihoods and the socio-economics of coastal aquaculture and fishing communities. To help provide an informed basis for management decisions, we first summarise evidence for ecological impacts of wild Pacific oysters in representative coastal habitats. At local scales, it is clear that establishment of Pacific oysters can significantly alter diversity, community structure and ecosystem processes, with effects varying among habitats and locations and with the density of oysters. Less evidence is available to evaluate regional-scale impacts. A range of management measures have been applied to mitigate negative impacts of wild Pacific oysters and we develop recommendations which are consistent with the scientific evidence and believe compatible with multiple interests. We conclude that all stakeholders must engage in regional decision making to help minimise negative environmental impacts, and promote sustainable industry development

    Quantifying the historic contribution of Olympia oysters to filtration in Pacific Coast (USA) estuaries and the implications for restoration objectives

    No full text
    Abstract The Olympia oyster, Ostrea lurida Carpenter, was formerly widespread in many US Pacific coast estuaries. Following dramatic declines in the late 1800s and early 1900s, this species is now the focus of renewed restoration efforts. Restoration is undertaken for brood stock rehabilitation as well as a range of ecosystem services such as filtration; however, these ecosystem services are as yet poorly quantified. We present the first laboratory measurements of filtration rates (FR) for O. lurida, to which we fit a model of FR as a function of dry tissue weight and water temperature. We find that O. lurida has a FR at optimum temperature similar to previously established means across oyster species at 1 g dry tissue weight (DTW), but lower than many Crassostrea species. We also find that the allometric exponent relating FR to DTW in O. lurida is lower than the previously published mean across oyster species. Based on our derived filtration rates and historical data, we estimate the historic impact of filtration by O. lurida in five Pacific coast estuaries. We find that historic O. lurida populations did not have the capacity to filter the full volume of the estuary within the estuary residence time in any of the estuaries examined. This result is primarily driven by the low water temperatures and the short estuary residence times that typify the Pacific coast. We conclude that, unlike Crassostrea virginica Gmelin on the Atlantic and Gulf coasts, the Olympia oyster was not historically a dominant force in regulating seston concentrations at large scales in Pacific coast estuaries. Given the differences in the ecological role and habitat structure of these two oyster species, we recommend that analogies between them be drawn with caution. We discuss the implications of our results for developing restoration objectives

    Fisheries rely on threatened salt marshes

    No full text
    Salt marsh ecosystems and the seascapes in which they are embedded serve as critical habitats for species harvested by fisheries (1), which provide food and economic security for hundreds of millions of people (2). Historical marsh losses coupled with increasing pressures from coastal development and climate change place these intertidal ecosystems and surrounding uplands under growing threat (3). Preventing further losses of salt marshes and associated fisheries production will require greater public awareness and difficult choices in coastal policy and management, underpinned by greater understanding of marsh function
    corecore