186 research outputs found

    Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses

    Get PDF
    Accurately predicting the response of Amazonia to climate change is important for predicting climate change across the globe. Changes in multiple climatic factors simultaneously result in complex non-linear ecosystem responses, which are difficult to predict using vegetation models. Using leaf- and canopy-scale observations, this study evaluated the capability of five vegetation models (Community Land Model version 3.5 coupled to the Dynamic Global Vegetation model – CLM3.5–DGVM; Ecosystem Demography model version 2 – ED2; the Joint UK Land Environment Simulator version 2.1 – JULES; Simple Biosphere model version 3 – SiB3; and the soil–plant–atmosphere model – SPA) to simulate the responses of leaf- and canopy-scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation, but all the models were consistent with the prediction that GPP would be higher if tropical forests were 5 °C cooler than current ambient temperatures. There was greater model–data consistency in the response of net ecosystem exchange (NEE) to changes in temperature than in the response to temperature by net photosynthesis (An), stomatal conductance (gs) and leaf area index (LAI). Modelled canopy-scale fluxes are calculated by scaling leaf-scale fluxes using LAI. At the leaf-scale, the models did not agree on the temperature or magnitude of the optimum points of An, Vcmax or gs, and model variation in these parameters was compensated for by variations in the absolute magnitude of simulated LAI and how it altered with temperature. Across the models, there was, however, consistency in two leaf-scale responses: (1) change in An with temperature was more closely linked to stomatal behaviour than biochemical processes; and (2) intrinsic water use efficiency (IWUE) increased with temperature, especially when combined with drought. These results suggest that even up to fairly extreme temperature increases from ambient levels (+6 °C), simulated photosynthesis becomes increasingly sensitive to gs and remains less sensitive to biochemical changes. To improve the reliability of simulations of the response of Amazonian rainforest to climate change, the mechanistic underpinnings of vegetation models need to be validated at both leaf- and canopy-scales to improve accuracy and consistency in the quantification of processes within and across an ecosystem.This research was enabled by a grant from the Andes–Amazon Initiative of The Gordon and Betty Moore Foundation. L. Rowland gratefully acknowledges financial support from the Natural Environment Research Council (UK) for a NERC PhD studentship, and NERC grant NE/J011002/1; PM also acknowledges support from ARC FT110100457

    A Mathematical Approach to Territorial Pattern Formation

    Get PDF
    Territorial behavior is widespread in the animal kingdom, with creatures seeking to gain parts of space for their exclusive use. It arises through a complicated interplay of many different behavioral features. Extracting and quantifying the processes that give rise to territorial patterns requires both mathematical models of movement and interaction mechanisms, together with statistical techniques for rigorously extracting parameters from data. Here, we give a brisk, pedagogical overview of the techniques so far developed to tackle the problem of territory formation. We give some examples of what has already been achieved using these techniques, together with pointers to where we believe the future lies in this area of study. This progress is a single example of a major aim for 21st century science: to construct quantitatively predictive theory for ecological systems

    Linking big models to big data: efficient ecosystem model calibration through Bayesian model emulation

    Get PDF
    Data-model integration plays a critical role in assessing and improving our capacity to predict ecosystem dynamics. Similarly, the ability to attach quantitative statements of uncertainty around model forecasts is crucial for model assessment and interpretation and for setting field research priorities. Bayesian methods provide a rigorous data assimilation framework for these applications, especially for problems with multiple data constraints. However, the Markov chain Monte Carlo (MCMC) techniques underlying most Bayesian calibration can be prohibitive for computationally demanding models and large datasets. We employ an alternative method, Bayesian model emulation of sufficient statistics, that can approximate the full joint posterior density, is more amenable to parallelization, and provides an estimate of parameter sensitivity. Analysis involved informative priors constructed from a meta-analysis of the primary literature and specification of both model and data uncertainties, and it introduced novel approaches to autocorrelation corrections on multiple data streams and emulating the sufficient statistics surface. We report the integration of this method within an ecological workflow management software, Predictive Ecosystem Analyzer (PEcAn), and its application and validation with two process-based terrestrial ecosystem models: SIPNET and ED2. In a test against a synthetic dataset, the emulator was able to retrieve the true parameter values. A comparison of the emulator approach to standard brute-force MCMC involving multiple data constraints showed that the emulator method was able to constrain the faster and simpler SIPNET model's parameters with comparable performance to the brute-force approach but reduced computation time by more than 2 orders of magnitude. The emulator was then applied to calibration of the ED2 model, whose complexity precludes standard (brute-force) Bayesian data assimilation techniques. Both models are constrained after assimilation of the observational data with the emulator method, reducing the uncertainty around their predictions. Performance metrics showed increased agreement between model predictions and data. Our study furthers efforts toward reducing model uncertainties, showing that the emulator method makes it possible to efficiently calibrate complex models.</p

    Integrating evolution into ecological modelling: accommodating phenotypic changes in agent based models.

    Get PDF
    PMCID: PMC3733718This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Evolutionary change is a characteristic of living organisms and forms one of the ways in which species adapt to changed conditions. However, most ecological models do not incorporate this ubiquitous phenomenon. We have developed a model that takes a 'phenotypic gambit' approach and focuses on changes in the frequency of phenotypes (which differ in timing of breeding and fecundity) within a population, using, as an example, seasonal breeding. Fitness per phenotype calculated as the individual's contribution to population growth on an annual basis coincide with the population dynamics per phenotype. Simplified model variants were explored to examine whether the complexity included in the model is justified. Outputs from the spatially implicit model underestimated the number of individuals across all phenotypes. When no phenotype transitions are included (i.e. offspring always inherit their parent's phenotype) numbers of all individuals are always underestimated. We conclude that by using a phenotypic gambit approach evolutionary dynamics can be incorporated into individual based models, and that all that is required is an understanding of the probability of offspring inheriting the parental phenotype

    Mapping tropical forest functional variation at satellite remote sensing resolutions depends on key traits

    Get PDF
    Although tropical forests differ substantially in form and function, they are often represented as a single biome in global change models, hindering understanding of how different tropical forests will respond to environmental change. The response of the tropical forest biome to environmental change is strongly influenced by forest type. Forest types differ based on functional traits and forest structure, which are readily derived from high resolution airborne remotely sensed data. Whether the spatial resolution of emerging satellite-derived hyperspectral data is sufficient to identify different tropical forest types is unclear. Here, we resample airborne remotely sensed forest data at spatial resolutions relevant to satellite remote sensing (30 m) across two sites in Malaysian Borneo. Using principal component and cluster analysis, we derive and map seven forest types. We find ecologically relevant variations in forest type that correspond to substantial differences in carbon stock, growth, and mortality rate. We find leaf mass per area and canopy phosphorus are critical traits for distinguishing forest type. Our findings highlight the importance of these parameters for accurately mapping tropical forest types using space borne observations

    Mechanistic home range analysis reveals drivers of space use patterns for a non-territorial passerine

    Get PDF
    1. Home ranging is a near-ubiquitous phenomenon in the animal kingdom. Understanding the behavioural mechanisms that give rise to observed home range patterns is thus an important general question, and mechanistic home range analysis (MHRA) provides the tools to address it. However, such analysis has hitherto been restricted to scent-marking territorial animals, so its potential breadth of application has not been tested. 2. Here, we apply MHRA to a population of long-tailed tits (Aegithalos caudatus), a non15 territorial passerine, in the non-breeding season where there is no clear “central place” near which birds need to remain. The aim is to uncover the principal movement mechanisms underlying observed home range formation. 3. Our foundational models consist of memory-mediated conspecific avoidance between flocks, combined with attraction to woodland. These are then modified to incorporate the effects of flock size and relatedness, to uncover the effect of these on the mechanisms of home range formation. 4. We found that a simple model of spatial avoidance, together with attraction to the central parts of woodland areas, accurately captures long-tailed tit home range patterns. Refining these models further, we show that the magnitude of spatial avoidance by a flock is negatively correlated to both the relative size of the flock (compared to its neighbour) and the relatedness of the flock with its neighbour. 5. Our study applies MHRA beyond the confines of scent-marking, territorial animals, so paves the way for much broader taxonomic application. These could potentially help uncover general properties underlying the emergence of animal space use patterns. This is also the first study to apply MHRA to questions of relatedness and flock size, thus broadening the potential possible applications of this suite of analytic techniques

    Predicting Maximum Tree Heights and Other Traits from Allometric Scaling and Resource Limitations

    Get PDF
    Terrestrial vegetation plays a central role in regulating the carbon and water cycles, and adjusting planetary albedo. As such, a clear understanding and accurate characterization of vegetation dynamics is critical to understanding and modeling the broader climate system. Maximum tree height is an important feature of forest vegetation because it is directly related to the overall scale of many ecological and environmental quantities and is an important indicator for understanding several properties of plant communities, including total standing biomass and resource use. We present a model that predicts local maximal tree height across the entire continental United States, in good agreement with data. The model combines scaling laws, which encode the average, base-line behavior of many tree characteristics, with energy budgets constrained by local resource limitations, such as precipitation, temperature and solar radiation. In addition to predicting maximum tree height in an environment, our framework can be extended to predict how other tree traits, such as stomatal density, depend on these resource constraints. Furthermore, it offers predictions for the relationship between height and whole canopy albedo, which is important for understanding the Earth's radiative budget, a critical component of the climate system. Because our model focuses on dominant features, which are represented by a small set of mechanisms, it can be easily integrated into more complicated ecological or climate models.National Science Foundation (U.S.) (Research Experience for Undergraduates stipend)Gordon and Betty Moore FoundationNational Science Foundation (U.S.) (Graduate Research Fellowship Program)Massachusetts Institute of Technology. Presidential FellowshipEugene V. and Clare Thaw Charitable TrustEngineering and Physical Sciences Research CouncilNational Science Foundation (U.S.) (PHY0202180)Colorado College (Venture Grant Program
    corecore