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Abstract
1. Home ranging is a near-ubiquitous phenomenon in the animal kingdom. 

Understanding the behavioural mechanisms that give rise to observed home 

range patterns is thus an important genera旭 questionp and mechanistic home range 
ana旭ysis ｪMHRAｫ provides the too旭s to address its Howeverp such ana旭ysis has hith-

erto been principa旭旭y restricted to scent､marking territoria旭 anima旭sp so its potentia旭 
breadth of application has not been tested.

ゴs Herep we app旭y MHRA to a popu旭ation of 旭ong､tai旭ed tits Aegithalos caudatusp a 
non､territoria旭 passerinep in the non､breeding season where there is no c旭ear ucen-

tral place’ near which birds need to remain. The aim is to uncover the principal 

movement mechanisms underlying observed home range formation.

3. Our foundational models consist of memory-mediated conspecific avoidance be-

tween f旭ocksp combined with attraction to wood旭ands These are then modified to 
incorporate the effects of f旭ock size and re旭atedness ｪises kinshipｫp to uncover the 
effect of these on the mechanisms of home range formation.

ジs We found that a simp旭e mode旭 of spatia旭 avoidancep together with attraction to the 
centra旭 parts of wood旭and areasp accurate旭y captures 旭ong､tai旭ed tit home range 
patternss Refining these mode旭s furtherp we show that the magnitude of spatia旭 
avoidance by a flock is negatively correlated to both the relative size of the flock 

ｪcompared to its neighbourｫ and the re旭atedness of the f旭ock with its neighbours
ズs Our study app旭ies MHRA beyond the confines of scent､markingp territoria旭 ani-

ma旭sp so paves the way for much broader taxonomic app旭ications These cou旭d 
potentially help uncover general properties underlying the emergence of animal 

space use patternss This is a旭so the first study to app旭y MHRA to questions of re-

旭atedness and f旭ock sizep thus broadening the potentia旭 possib旭e app旭ications of this 
suite of analytic techniques.

K E Y WO RD S

advection･diffusionp home rangep 旭ong､tai旭ed titp mechanistic mode旭旭ingp partia旭 differentia旭 
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ゲ科 |科INTRODUC TION

Understanding the spatial distributions of animals is a core concern 

for eco旭ogica旭 researchp being at the interface of popu旭ation dy-

namicsp behavioura旭 eco旭ogy and conservation concerns ｪFrank旭in ｹ 
Mi旭旭erp ゴグゲグｫs Howeverp whi旭e emergent patterns of space use may be 
observed broad旭y across time and spacep they are u旭timate旭y caused 
by movement decisions of individua旭 anima旭s ｪNathan et a旭sp ゴググ芦ｫs 
These movements can affect the structure of entire ecosystems by 

a旭tering popu旭ations ｪMora旭es et a旭sp ゴグゲグｫp inf旭uencing environments 
ｪRiotte､Lambert ｹ Matthiopou旭osp ゴグゲゾｫ and modifying popu旭ation 
dynamics such as predator･prey ｪLewis ｹ Murrayp ゲゾゾザｫ and com-

petitive ｪPotts ｹ Petrovskiip ゴグゲゼｫ interactionss
Home range formation provides a particu旭ar examp旭e of ani-

ma旭 space use that is preva旭ent across a wide range of taxa ｪB塾rgerp 
Da旭zie旭p ｹ Fryxe旭旭p ゴググ芦q Jetzp Carbonep Fu旭fordp ｹ Brownp ゴググジｫs It 
occurs whenever animals restrict their movement to an area of the 

landscape far smaller than they could cover given their locomotive 

capabi旭ities ｪBurtp ゲゾジザｫs Many reasons have been put forward for 
the formation of home rangesp inc旭uding optimizing foraging benefits 
ｪMitche旭旭 ｹ Powe旭旭p ゴグゲゴq Moorter et a旭sp ゴググゾｫp avoiding cost旭y con-

f旭icts with conspecifics ｪises territoria旭ityp Jetz et a旭sp ゴググジq Moorcroft 
ｹ Lewisp ゴググ葦ｫ or avoiding predators ｪBasti旭旭e､Rousseau et a旭sp ゴグゲズq 
Co旭eman ｹ Hi旭旭p ゴグゲジｫs This has 旭ed to the hypothesis that there may 
be general mechanisms underlying home range formation that oper-

ate across many species ｪB塾rger et a旭sp ゴググ芦ｫp a旭though the mecha-

nisms involved have proved rather elusive.

Indeedp many home range mode旭s do not seek to understand 
the movement mechanisms ｪasksas processesｫ behind home range 
formationp but simp旭y aim to describe the space use distribution 
corresponding to a home range ｪasksas patternsｫs These inc旭ude the 
Minimum Convex Po旭ygon ｪHarris et a旭sp ゲゾゾグq Mohrp ゲゾジゼｫp which 
describes the extent of the home rangep and kerne旭 density estima-

tors ｪWortonp ゲゾ芦ゾｫ and their extensions ｪesgs F旭eming et a旭sp ゴグゲズｫp 
which estimate the utilization distribution of an animal or group. 

Such descriptivep statistica旭 mode旭s of the home range are sufficient 
for understanding various eco旭ogica旭 questionss For examp旭ep sta-

tistica旭 methods have been used to ascertain the extent to which 
anima旭s use different habitat types ｪMokrossp Pottsp Ruttp ｹ Stoufferp 
ゴグゲ芦ｫp the re旭atedness of neighbouring groups ｪGompperp Gitt旭emanp 
ｹ Waynep ゲゾゾ芦q Mc旭ough旭inp Fergusonp ｹ Messierp ゴグググｫ and hier-
archies of size and socia旭 dominance ｪH塾jesj塾p Øk旭andp Sundstr塾mp 
Petterssonp ｹ Johnssonp ゴググゼq Woodward et a旭sp ゴググズｫs

Howeverp there are many behavioura旭 questions which cannot be 
easi旭y answered by traditiona旭p statistica旭 estimators of home ranges 
Principa旭旭yp those which seek to unvei旭 the movement and interaction 
processes that give rise to home range pattern formation require a 

mechanistic mode旭旭ing approachs In such an approachp the proxi-
mate behavioura旭 decisions of an anima旭 ｪises processesｫ are mode旭旭ed 
exp旭icit旭y and the home range ｪises patternｫ arises as an emergent 
property of this model. This mechanistic modelling approach has 

enab旭ed researchers to understand various eco旭ogica旭 phenomenap 
such as the processes underlying the emergence of prey corridors 

between predator home ranges ｪHame旭in ｹ Lewisp ゴグゲグq Lewis ｹ 
Murrayp ゲゾゾザｫp the effect of disease spread on movement decisions 
ｪPottsp Harrisp ｹ Giuggio旭ip ゴグゲザｫp coyote Canis latrans territory rear-

rangement fo旭旭owing the death of an a旭pha ma旭e ｪMoorcroftp Lewisp ｹ 
Crabtreep ゴググ葦ｫp and fission processes in meerkat Suricata suricatta 

territories ｪBatemanp Lewisp Ga旭旭p Manserp ｹ C旭utton､Brockp ゴグゲズｫs A旭旭 
of these examp旭es make use of exp旭icitp mathematica旭 旭inks between 
movement and interaction mechanisms and the emergent home 

range patternsp to make important bio旭ogica旭 inferencess
Despite the insights gained from mechanistic home range anal-

ysis ｪMHRAｫ in the context of partia旭 differentia旭 equations ｪPDEsｫp 
these ana旭ytic techniques have hitherto been used a旭most exc旭u-

sive旭y on scent､marking anima旭s ｪbut see Pottsp Mokrossp ｹ Lewisp 
ゴグゲジｫp with the exception of the ear旭iest and simp旭est mode旭sp 
where home ranging arose purely from an attraction to a central 

p旭ace ｪHo旭gatep ゲゾゼゲｫs Howeverp many anima旭s advertise their ter-
ritory through cues other than scentp such as dominance disp旭aysp 
voca旭izations and fighting ｪco旭旭ective旭y known as uritua旭ized aggres-

sionvｫs Furthermorep not a旭旭 anima旭s have a c旭ear ucentra旭 pointv ｪsuch 
as a den or nest siteｫ which pins their home range in a particu旭ar 
p旭aces The mode旭 of Potts and Lewis ｪゴグゲ葦ｫ was designed to extend 
MHRA for use with such anima旭s in the context of PDEss Whi旭e home 
range formation with neither a central place nor scent-mark avoid-

ance had previously been modelled using simulations of individu-

a旭､based mode旭s ｪMoorter et a旭sp ゴググゾq Riotte､Lambertp Benhamoup 
ｹ Chamai旭旭爾､Jammesp ゴグゲズq Siniff ｹ Jessenp ゲゾ葦ゾｫp the extension 
to the PDE framework offered by Potts and Lewis ｪゴグゲ葦ｫ enab旭ed 
rigorous mathematical analysis of the conditions under which home 

ranges can forms Therep the authors showed mathematica旭旭y that 
home ranges can form purely from a mechanism of ritualized ag-

gressionp coup旭ed with memory of those aggression eventss
In this studyp we advance the app旭icabi旭ity of PDE､based MHRA 

further sti旭旭p by showing that MHRA can be used in situations where 
there is no exp旭icit territoria旭 behaviourp and a旭so no ucentra旭 pointv 
around which animals localize their movement. This is the case for 

our study speciesp the 旭ong､tai旭ed tit Aegithalos caudatusp outside 
the breeding seasons At these times of yearp they 旭ive in f旭ocksp 
each of which has a distinct home range that only overlaps slightly 

with those of neighbouring f旭ocks ｪGastonp ゲゾゼザq Hatchwe旭旭p ゴグゲ葦q 
Hatchwe旭旭p Andersonp Rossp Fow旭iep ｹ B旭ackwe旭旭p ゴググゲｫs They do not 
maintain a fixed roosting sitep so have no c旭ear 旭oca旭ization centrep 
and have rarely been observed to engage in territorial interactions 

ｪNapperp Sharpp McGowanp Simeonip ｹ Hatchwe旭旭p ゴグゲザｫs
Nonethe旭essp it may be that 旭ong､tai旭ed tits avoid areas where 

they have seen neighbouring flocks foraging. This could be to avoid 

social interaction with other flocks or to strengthen relationships 

within f旭ockss We hypothesize that this behaviour acts as a proxy 
for territoria旭ityp causing distinct home ranges to form without re-

quiring direct旭y observab旭ep aggressivep territoria旭 behaviours To test 
this hypothesisp we formu旭ate a mechanistic mode旭p incorporating 
such non-aggressive avoidance mechanisms and observe whether 

this can exp旭ain the various home range patterns observed in a 旭ong､
tailed tit population across a number of seasons.
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Since there is a clear and well-documented effect of habitat type 

on the space use of 旭ong､tai旭ed titsp arising from the structure and 
composition of wood旭and ｪGastonp ゲゾゼザｫp we a旭so incorporate into 
our study a set of models that are each linked to a distinct hypothesis 

on the effect of wood旭and on bird movements Wood旭and structure 
is very comp旭ex in our study systemp incorporating dozens of genera 
of trees and shrubs of varying sizesp so we use a simp旭ified approach 
by viewing woodland as a binary variable: either present or absent. 

Then our hypotheses all relate to how flocks move with respect to 

the presence or absence of treess We use the resu旭ting mode旭 to 
show that the home range patterns of long-tailed tits can be pre-

dominant旭y exp旭ained by a combination of conspecific avoidance and 
attraction towards woodland areas.

From this starting pointp we extend our mode旭 to test various hy-

potheses about more subt旭e drivers of home range patternss Firstp 
we examine how the re旭ative size of a f旭ock ｪises number of individ-

ua旭sｫ affects the extent to which it avoids neighbouring f旭ockss We 
hypothesize that smaller flocks will tend to have a stronger avoid-

ance mechanism than larger flocks because if there is competition 

over space usep sma旭旭er f旭ocks are 旭ike旭y to be 旭ess competitive than 
旭arge f旭ocks and so are predicted to avoid potentia旭 conf旭ict ｪAdams ｹ 
P旭owesp ゴグゲゾq Dyb旭ep Hous旭ayp Manserp ｹ C旭utton､Brockp ゴグゲゾq Portp 
Kappe旭erp ｹ Johnstonep ゴグゲゲｫs Secondp given that there is an appar-
ent corre旭ation between spatia旭 proximity and re旭atedness ｪNapper 
ｹ Hatchwe旭旭p ゴグゲ葦ｫp we hypothesize that the re旭atedness of neigh-

bouring flocks will be inversely related to the strength of avoidance 

mechanisms We show that these subt旭e effects of f旭ock size and re旭at-
edness cannot be observed using kerne旭 density estimatorsp a popu旭ar 
statistica旭 mode旭 describing a f旭ockｷs home rangep but do emerge from 
a MHRA approachs This demonstrates the usefu旭ness of mechanistic 
models of home range for uncovering features of movement that can-

not easi旭y be detected using descriptivep statistica旭 mode旭ss
Overa旭旭p our study makes theoretica旭 advances by demonstrating 

ｪaｫ that MHRA is app旭icab旭e in a much wider range of situations than 
previous旭y used and ｪbｫ that MHRA can uncover behavioura旭 drivers of 
movement and space use that are not simp旭e to find using traditiona旭p 
statistica旭 measures of home ranges Furthermorep our study makes im-

portant advances in avian behavioura旭 eco旭ogy by demonstrating ｪcｫ 
that relatedness and flock size can affect between-flock movement 

responses and ｪdｫ that avoidance mechanisms may exist in species that 
do not disp旭ay obvious territoria旭 behaviourp exp旭aining the existence 
of home range segregation in such species.

ゴ科 |科MATERIAL S AND METHODS

ゴsゲ科|科Study system

The data come from a study on 旭ong､tai旭ed titsp a sma旭旭 non､territoria旭 
bird found across Europe and Asias Long､tai旭ed tits weigh on旭y 葦･芦 g 
ｪG旭en ｹ Perrinsp ゲゾ芦芦ｫ and their main 旭ife､history goa旭 whi旭e not focus-

ing on breeding is to forage for food ｪGastonp ゲゾゼザq Hatchwe旭旭p ゴグゲ葦ｫs 
We studied the behaviour of these birds in the non､breeding season 

when they live in home ranging flocks of around 5–25 individuals 

ｪNapper ｹ Hatchwe旭旭p ゴグゲ葦ｫs One or more f旭edged broods and their 
parents and he旭pers are usua旭旭y the nuc旭eus of a winter f旭ockp which 
are then joined by failed breeders who may or may not be related to 

the broodｪsｫ ｪNapper ｹ Hatchwe旭旭p ゴグゲ葦ｫs Thusp the majority of f旭ock 
members ｪ葦グ鯵･ゼグ鯵ｫ are typica旭旭y re旭ated ｪr ┕ グsゴズp where r is the co-

efficient of re旭atednessp Wrightp ゲゾゴゴｫ to at 旭east one other member 
of the same f旭ockp a旭though those re旭atives may be drawn from two 
or more fami旭ies ｪHatchwe旭旭 et a旭sp ゴググゲｫs In additionp members of one 
flock often have relatives in other flocks as a result of dispersal during 

the non､breeding season ｪNapper ｹ Hatchwe旭旭p ゴグゲ葦ｫs Members of a 
flock forage together in the day and then sleep together in a commu-

na旭 roostp which often changes 旭ocation between nightss
The study site is contained within the Rive旭in Va旭旭eyp Sheffie旭dp UK 

ｪズザﾀゴザ昼Np ゲﾀザジ昼Wｫp covering approximate旭y ザ km2. The population 

of long-tailed tits that inhabits this site has been studied since 1994. 

Here we use data from ゴグゲグ to ゴグゲザp which were first reported in 
Napper and Hatchwe旭旭 ｪゴグゲ葦ｫp together with data from ゴグゲ芦 to ゴグゲゾ 
which has not been previously studied in published work. Data were 

co旭旭ected in the Fox Hagg wood旭and of the Rive旭in Va旭旭ey for the ゴグゲゲ･
ゴグゲゴ seasonp in the B旭ack Brook wood旭and for the ゴグゲグ･ゴグゲゲ and 
ゴグゲゴ･ゴグゲザ seasonsp and for the ゴグゲ芦･ゴグゲゾ dataset we studied both 
the Fox Hagg and B旭ack Brook wood旭andss The approximate home 
range size for a single flock is 0.15 ± 0.03 km2 (mean ± 95% CI; using 

a ゲググ鯵 minimum convex po旭ygonｫs As f旭ocks of 旭ong､tai旭ed tits move 
through their environmentp they usua旭旭y stay in each tree for 旭ess than 
a minute before moving on ｪBs Js Hatchwe旭旭p perss obssｫs Consequent旭yp 
tracking data of the birds consists of GPS 旭ocationsp recorded at time 
interva旭s of ゲ mins Locations were recorded on a Garmin Geko ゴグゲ 
GPS with a standard error of ゲグ ms Observations were made by find-

ing a flock in the study site by recognizing their calls and then identi-

fying ringed individua旭ss At 旭east ゾズ鯵 of the popu旭ation are typica旭旭y 
ringed by the end of the breeding season ｪNapper ｹ Hatchwe旭旭p ゴグゲ葦ｫs 
An observation period began when a f旭ock was first encountered and 
the first location was recorded. The observation period ended when 

sight of the f旭ock was 旭osts We recorded one 旭ocation every minute 
to give a trajectory for each observation period. There were 19 ± 2 

(mean ± ゾズ鯵 CIｫ 旭ocations per observation periods
For this studyp we used 旭ocation data from six of eight f旭ocks that 

were fo旭旭owed in the non､breeding season of ゴグゲゲ･ゴグゲゴ in the Fox 
Hagg wood旭ands We removed from our ana旭ysis two f旭ocks which con-

tained on旭y four and seven 旭ocationsp co旭旭ected over one observation 
periodp as we conc旭uded this was not enough data to estimate home 
rangess Datasets for the six remaining f旭ocks consisted of ゲズズp ザジゲp ゲジグp 
ゲゲグp ゲズゴ and 芦ザ 旭ocationsp recorded over a range of ズ･ゴゲ observation 
periods between May ゴグゲゲ and February ゴグゲゴs In addition to the ゴグゲゲ･
ゴグゲゴ datap we va旭idated our resu旭ts using data from the non､breeding 
seasons of ゴグゲグ･ゴグゲゲp ゴグゲゴ･ゴグゲザ and ゴグゲ芦･ゴグゲゾ co旭旭ected in various 
parts of the Rive旭in Va旭旭ey study sites We fo旭旭owed a simi旭ar procedure 
to remove from our analysis any flocks that had data collected over only 

one observation periods In each casep there were at most ゲ芦 旭ocations 
per flock in the removed datasets. The flocks that we ended up using 

each had >40 recorded locations taken over >1 observation periods.
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ゴsゴ科|科Mathematica旭 mode旭s

The trajectories from each observation period are too short to esti-

mate covariates of stepwise movement decisions dependent upon 

the presence of other f旭ocksp and therefore fit a stepwise movement 
kerne旭 to the data as inp for examp旭ep Avgar et a旭s ｪゴグゲズｫ and Avgarp 
Pottsp Lewisp and Boyce ｪゴグゲ葦ｫs Additiona旭旭yp it wou旭d be difficu旭t to 
infer any inter-flock interaction behaviour since the trajectories of 

different f旭ocks are not recorded at the same times Insteadp we infer 
the movement processes of a flock by fitting a mechanistic model of 

space use to locations collected over the entire non-breeding season 

ｪMay･Februaryｫs This method is known as MHRA ｪMoorcroft ｹ 
Lewisp ゴググ葦ｫs We use a system of advection･diffusion equationsp 
each of which mode旭s a f旭ockｷs uti旭ization distributionp ui(x, t)p which 
is the probability density function for the location of flock ip where 
i∈{1, …, N} indexes the N f旭ockss Each equation has the forms

where D
i
 is the diffusion constant and c

i
 is the magnitude of advection 

in the direction of vector field Ai(x, t) for flock i. This vector field can 

take various forms depending on the question at handp and is used to 
test hypotheses about the drivers of space useq some specific examp旭es 
are described 旭aters In Equation ゲp x = (x, y)p where x and y are Cartesian 

coordinates and ∇ =

(

�

�x
,

�

�y

)

p as is standards The diffusion term mode旭s 
any behavioural drivers behind movement that are unknown or that are 

not exp旭icit旭y testedp for examp旭e foragings To avoid using an unreason-

ab旭y 旭arge number of parameters in our inferencep we initia旭旭y assume 
that diffusion is constant and the magnitude of advection is the same 

for all flocks so that D
i
 = D and c

i
 = cp for a旭旭 i∈{1, . . . , N}.

To so旭ve ｪゲｫ numerica旭旭yp we must pick a domainp Ωp and enforce 
boundary conditions on the boundary ┚Ωs A bio旭ogica旭旭y reasonab旭e 
condition is to assume zero f旭ux across the boundaryp meaning that the 
number of birds exiting the domain at a boundary point isp on averagep 
the same as the number entering at that points In Equation ゲp the f旭ux is 
−D∇ui + cuiAip so a zero f旭ux boundary condition means that

where nx is a vector normal to the boundary at xs Because ui(x, t) is a 

probability density function defined on Ωp we must a旭so impose the 
following condition

Having set up the genera旭 mode旭旭ing framework in Equations ゲ･ザp we 
now describe specific choices of the vector field Ai(x, t)p that corre-

spond to different hypotheses about the movement and interaction 

mechanisms behind observed home range patternss Firstp note that 

each flock tends to reside in a slightly different part of space with 

on旭y minima旭 over旭ap ｪFigure ゴaｫp suggesting that f旭ocks may be de旭ib-

erately avoiding areas that they know to be used by other flocks. In 

the decades that this popu旭ation has been studiedp interactions be-

tween f旭ocks occur regu旭ar旭yp but aggression is very rare旭y invo旭ved 
in these encounters ｪNapper ｹ Hatchwe旭旭p ゴグゲ葦ｫp meaning that this 
avoidance mechanism is highly unlikely to be a result of aggressive 

defences Another hypothesized reason for spatia旭 segregation of an-

ima旭 popu旭ations was given by Riotte､Lambert et a旭s ｪゴグゲズｫp and in-

vo旭ves dep旭etion and renewa旭 of resourcess Howeverp for 旭ong､tai旭ed 
titsp resources are abundant and dep旭ete on旭y minima旭旭y as the birds 
forage ｪBs Js Hatchwe旭旭p perss obssｫs

Thereforep instead of these previous旭y used mechanismsp we 
use a memory､based approachp assuming that a f旭ock has some 
know旭edge of other f旭ocksｷ space usep due to previous meetings 
which they remember. This knowledge causes a flock to avoid 

areas where they believe other flocks may reside. The precise 

details of interactions between adjacent flocks are not import-

ant for the mode旭p but cou旭d inc旭ude one f旭ock seeing anotherp or 
hearing their ca旭旭ss As 旭ong as some interaction has occurred be-

tween flocks and there is some avoidance mechanism (of places 

where past interactions have happenedｫ in p旭acep then our mode旭 
is appropriate.

To mode旭 the avoidance mechanismp we introduce the concept of 
an interaction zone ｪIZｫ for each f旭ocks The IZ of a f旭ock mode旭s a 
cognitive map of places where the flock remembers having previ-

ous旭y interacted with other f旭ockss We assume that individua旭s within 
a f旭ock share informationp and so have a common IZs The probabi旭ity 
that a 旭ocationp xp is in the IZ for f旭ock i at time t is denoted by ki(x, t). 

The probability ki increases in places where other flocks have a high 

probability of using that space and decreases as other flocks become 

旭ess 旭ike旭y to use the spaces Thusp the dynamics of ki(x, t) are de-

scribed by the following equation:

where ρ
i
 is the rate at which the IZ is reinforced when two flocks of 

long-tailed tits are at the same location and β
i
 is the rate of decay of 

the IZ due to revisiting parts of space without encountering other 

f旭ockss Mathematica旭旭yp the IZ is equiva旭ent to the concept of a uconf旭ict 
zonev introduced by Potts and Lewis ｪゴグゲ葦ｫs For simp旭icityp and to avoid 
an unreasonab旭y 旭arge number of parametersp we start by assuming 
that �i = � and � i = � for all i so that they are the same for all flocks. 

Howeverp in Section ゴsジp we re旭ax this assumptions
When making movement decisionsp it is not rea旭istic to assume 

a f旭ock wi旭旭 examine the infinitesima旭旭y precise 旭ocation where it cur-
rent旭y happens to bes Ratherp it is better to assume the f旭ock wi旭旭 ex-

amine a sma旭旭 area around that 旭ocations We mode旭 this area as a disc 
with radius δ. This can be thought of as the flock's perceptual radius 

for which it makes its movement decisionss This idea correspondsp 
mathematica旭旭yp to averaging the va旭ue of ki(x, t) over this disc.  

ｪゲｫ

]

ｪゴｫ|||
nx ⋅

[
D∇ui − cuiAi

]|||x∈�Ω
= 0,

ｪザｫ∫
Ω

ui dx = 1.

ｪジｫ
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We thus define ki(x, t|�) to be a spatial average over all ki(x, t) within 

a radius δ of xp so thats

where B
�
(x) is a disc of radius δp centred at xs A simi旭ar 旭oca旭 averaging 

was a旭so used by Potts and Lewis ｪゴグゲ葦ｫ to mode旭 territories formed 
by ritua旭ized aggressionp where they showed that it is necessary to use 
ki instead of kip to ensure the system is mathematica旭旭y we旭旭､behaveds

Long､tai旭ed tits are known to forage predominant旭y in wood旭and 
habitats ｪGastonp ゲゾゼザq Hatchwe旭旭p ゴグゲ葦ｫ and our 旭ocation data suggest 
that the f旭ocks are a旭most a旭ways inside wood旭ands We therefore incor-
porate into our modelling framework a tendency for flocks to move in 

areas with tree coveragep a旭ongside the tendency to move away from 
the IZ. This leads to the following definition of A 

i
 from Equation ゲs

Herep c1 and c2 describe the relative magnitude of advection away from 

the IZ and towards wood旭andp respective旭yp and M indexes different 
mode旭s of attraction to wood旭andp which we now describes We first 
discretise the landscape and define any cell with more than half tree 

coverage to be in a wood旭and areas Each wood旭and area is defined vi-
sua旭旭y using a procedure detai旭ed in Appendix Sジs We define six mode旭s 
as follows:

� (M = グｫ no attraction to wood旭and ｪc2 = グｫp
� (M = ゲｫ advection acts so旭e旭y on the wood旭and edgesp to draw 

f旭ocks in ｪFigure ゲbｫp
� (M = ゴｫ advection acts both on the edges and within the wood旭and 

to draw f旭ocks towards the centre of a wood旭and area ｪFigure ゲcｫp
� (M = ザｫ advection acts on the wood旭and edges and a旭旭 space out-

side of the woodland areas to draw the flocks towards the wood-

旭and ｪFigure ゲdｫp

� (M = ジｫ inside the wood旭and the f旭ocks are drawn towards the 
centre of the woodland area and outside they are drawn in  

ｪFigure ゲeｫs
� (M = ズｫ no advection away from the IZ ｪc2 = グｫ and v 

M
 corresponds 

to the best-fitting model from Models 0–4.

The vector fie旭dsp vM(x|�M)p for the Fox Hagg and B旭ack Brook 
wood旭ands ｪsee Figure ゲaｫ are shown in Figure ゲb･e and defined pre-

cise旭y in Appendix Sゲs Each vM depends upon a parameter �Mp which 
controls how much the birds are attracted to woodland.

For our ana旭ysisp we use a square domainp Ω = [0, L] × [0, L]p to 
represent the 旭andscapes shown in Figure ゲas We non､dimensiona旭-
ize the system in Equations ゲ･葦 as fo旭旭ows

Immediate旭y dropping the ti旭des for notationa旭 conveniencep we arrive 
at the fo旭旭owing dimension旭ess version of Equations ゲ･葦r

We summarize a旭旭 the notation used in Tab旭e ゲs

ｪズｫki(x, t|�) =
1

��
2 ∫

B
�
(x)

ki(x, t)dx,

ｪ葦ｫAi,M = −c1∇ki + c2vM.
ｪゼｫ

x̃ =
x

L
, ỹ =

y

L
, �̃ =

�

L
, ũi = Lui, k̃i = ki, ṽM = LvM, t̃ =

��

L2
,

a =
D

�
, b =

�L

�
, � = c

c1

D
, � = c

c2

D
, Ω̃ =

Ω

L2
.

ｪ芦ｫ�ui

�t
= ∇

2
ui + ∇ ⋅ [�ui∇ki − �uivM],

ｪゾｫa
�ki

�t
= uiΣi≠juj

(

1 − ki
)

− bkiui,

ｪゲグｫ|||
nx ⋅ [∇ui + �ui∇ki − �uivM]

|||�Ω
= 0,

ｪゲゲｫ∫
Ω

ui dx = 1.

F I G U R E  ゲ 科 Pane旭 ｪaｫ shows the rea旭 旭andscape taken from sate旭旭ite images for the Fox Hagg ｪtopｫ and B旭ack Brook ｪbottomｫ wood旭andsp 
which are the study sites for the datasets ゴグゲゲ･ゴグゲゴ and ゴグゲゴ･ゴグゲザp respective旭ys Pane旭s ｪb･eｫ show the vector fie旭ds v 

M
 for the Models 

ゲ･ジp respective旭yp corresponding to the wood旭and images ｪaｫ on their respective rows Each of these mode旭s represents an attraction into a 
wood旭and areap fo旭旭owing the vector fie旭ds
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ゴsザ科|科Mode旭 fitting and comparison

We so旭ve Equations 芦･ゲゲ for u
i
 and k

i
 numerically using a finite-

difference approximation ｪSmithp ゲゾ芦葦ｫp detai旭ed in Appendix Sザs To 
fit the steady､state of Equations 芦･ゲゲ to a datasetp we find the set 
of parameters b, � , �, � and �M which maximize the fo旭旭owing 旭ike旭i-
hood function 

where xi,n is the nth location of flock ip X = {xi,n}i,n is the set of all loca-

tionsp u∗
i
 is the numerical steady-state solution of u

i
p N is the number 

of flocks and N
i
 is the number of locations in the dataset for flock i. 

Equation ゲゴ assumes the 旭ocations are independentp which we jus-

tify in Appendix Sゴ using a method by Benhamoup Va旭eixp Chamai旭旭爾､
Jammesp Macdona旭dp and Loveridge ｪゴグゲジｫs To maximize Equation ゲゴp 
we use the Ne旭der･Mead maximization a旭gorithm ｪNe旭der ｹ Meadp 
ゲゾ葦ズｫ and se旭ect the best mode旭 based on their Bayesian information 
criterion ｪBICｫ scores ｪSchwarzp ゲゾゼ芦ｫs

ゴsジ科|科Testing for other behavioura旭 
effects of movement

As we旭旭 as testing hypotheses regarding inter､f旭ock interactions and ef-
fects of wood旭andp we a旭so use our mode旭旭ing approach to test effects 

on movement of ｪaｫ f旭ock size and ｪbｫ inter､f旭ock re旭atednesss For the data 
co旭旭ected in ゴグゲ芦･ゴグゲゾp we have a record of the individua旭 birds seen in 
each f旭ockp so we can estimate the size of the f旭ockss Additiona旭旭yp from 
socia旭 pedigreesp we know the identity of c旭ose kin ｪparentsp offspring 
and sib旭ingsｫ for ゲグ芦 of the ゲゾゴ birdss Tab旭e ゴ shows the size of each 
flock and the number of kin-connections between them.

For this part of the investigationp our nu旭旭 mode旭 is the best､fit 
mode旭 out of Mode旭s グ･ズs We then modify this mode旭 by assuming 
that the IZ of each flock develops at a different rate for interactions 

with each of the other f旭ocksp dependent on either its kin､connections 
or re旭ative sizes More precise旭yp we change Equation ゾ to

where the various ��� take different values depending on the kin-con-

nections between two flocks or their relative flock size (in Section 2.2–

ゴsザp ��� = 1 for all flocks i and jｫs A 旭arger ��� means that flock i is less 

likely to visit places that it has previously interacted with flock j than if 

it were to have a smaller ���s We then set ��� to be a function of either 

the relative size of flock j compared to flock i and/or the number of 

kin-connections between i and jp denoted ���s For thisp we use three 
functional forms

where s
i
 (resp. s

j
ｫ is the size of f旭ock i (resp. jｫs

Equation ゲジ gives a higher va旭ue for �(1)

��
 when sj> si than when 

sj< sip meaning the probabi旭ity that a 旭ocation wi旭旭 be considered to 
be in the IZ of flock i will be higher if flock j is larger. This tests the 

hypothesis that a flock is less likely to consider a location safe if they 

have observed it being used by a larger flock than if the same loca-

tion were observed being used by a sma旭旭er f旭ocks Equation ゲズ gives 

ｪゲゴｫL(b, � , �, � , �M|X) =
N∏

i=1

Ni∏

n=1

u
∗

i
(xi, n),

ｪゲザｫa
�ki

�t
= uiΣi≠j���uj

(

1 − ki
)

− bkiui,

ｪゲジｫ�
(1)

��
= 1 + �1

sj

si
,

ｪゲズｫ�
(2)

��
=

�2

�
�3
��

,

ｪゲ葦ｫ�
(3)

��
= �

(1)

��
�
(2)

��
,

TA B L E  ゲ 科 Glossary of variables and constants

Symbo旭 Interpretation

IZ The interaction zonep which is a cognitive map of the 
places a flock has had interactions with another flock

x and t Space and timep respective旭y

ui(x, t) The probability density function of flock i at time t

ki(x, t) The probability of location x being in the IZ of flock i at 

time t

vM(x) A vector fie旭d of unit vectors directing towards 
wood旭andp different for each mode旭 Mp visua旭ized in 
Figure ゲ

ki(x, t|�) An average of ki(x, t) over the circular area within a 

radiusp δ and centre x

ρ The rate at which an interaction happens when two 

flocks meet

β The rate of decay of the IZ due to i visiting without 

encountering other flocks

c1 The magnitude of advective tendency away from the IZ

c2 The magnitude of advective tendency towards woodland

ω
M

A parameter re旭ated to the rate of attraction towards 
旭arger wood旭and areas ｪsee Appendix Sゲｫ

δ The perceptual radius of a flock

Ω The domain to be so旭ved overp where Ω = ｬグp Lｭ × ｬグp Lｭ

┚Ω The boundary of the domain to be solved over

TA B L E  ゴ 科 The number of kin-connections between flocks and 

the size of f旭ocks for the second dataset in ゴグゲ芦･ゴグゲゾ shown in 
Figure ザds There is a kin､connection if two birds are re旭ated by 
either being sib旭ingsp parents or offsprings The size of the f旭ocks is 
the number of birds in a f旭ockp if a bird has been seen in different 
flocks it is given a value of 0.5 in both (no birds here were seen in 

more than two of the f旭ocksｫ

Kin､connections A B C D E

A — 11 ゼ 0 1

B 11 — 6 0 1

C ゼ 6 — 2 4

D 0 0 2 — 1

E 1 1 4 1 —

Size of flock 29.5 39.5 12 9.5 芦sズ
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a smaller value for �
(2)

��
 if there are more kin-connections between 

flock i and j. This means a flock would be less likely to consider a loca-

tion part of its IZ if it had observed a highly related flock there than if 

it had observed a 旭ess re旭ated f旭ock in the same 旭ocations Equation ゲ葦 
combines the two hypothesess We fit the parameters σ1p σ2 and σ3 

using the functions ゲジ･ゲ葦s We use BIC both to se旭ect between the 
three mode旭sp and examine whether they are an improvement on the 
null model (��� = 1 for all ip jｫs

ゴsズ科|科The effect of the 旭andscape on kinesis

We have so far considered the effects of wood旭and and the IZ on 
advections Howeverp it is a旭so possib旭e for such 旭andscape features to 
have an effect on kinesis ｪises the diffusion coefficient in Equation ゲｫ 
as we旭旭s To test thisp we change Equation 芦 to

where Φi(x, t) is a function of spacep and depends upon the presence 
of wood旭and and｠or the IZs We choose vM to be the function from the 

best､fit mode旭 out of Mode旭s グ･ズp and perform mode旭 se旭ection ｪvia 
BIC as in Section ゴsザｫ using the fo旭旭owing three functiona旭 forms for Φi

where w(x) is the density va旭ue of the wood旭andp defined as fo旭旭owss 
When extending Mode旭 ゲ or ザ to incorporate Equations ゲ芦･ゴグp we use 
w(x) = 1 for x in woodland and w(x) = 0 for x outside wood旭ands When 
extending Mode旭 ゴ or ジp we use w(x) = D(x)�M for x in wood旭andp where 
D(x) is the distance from x to the wood旭and edgep and w(x)=0 outside 

wood旭ands Herep Equation ゲ芦 mode旭s a situation where the presence 
of wood旭and a旭one has an effect on kinesiss In Equation ゲゾp on旭y the 
IZ has an effect on kinesiss Equation ゴグ incorporates both effectss We 
investigate this effect on kinesis both with and without the taxis term 
in Equation ゲゼs

ザ科 |科RESULTS

For home range observations from the non､breeding season of ゴグゲゲ･
ゴグゲゴ ｪFigure ゴaｫp we found that Mode旭 ジp which contains movement 
away from areas of past interaction with other flocks and move-

ment towards wood旭andp captured the home ranges best ｪFigure ゴbｫs 

ｪゲゼｫ�ui

�t
= ∇

2[Φiui] + ∇ ⋅ [�ui∇ki − �uivM],

ｪゲ芦ｫΦ
(1)

i
(x) = exp(�w(x)),

ｪゲゾｫΦ
(2)

i
(x, t) = exp(�ki(x, t)),

ｪゴグｫΦ
(3)

i
(x, t) = exp(�w(x) + �ki(x, t)),

F I G U R E  ゴ 科 Utilization distributions 

informed by fitting the steady-state 

of Equations 芦･ゲゲ to data from the 
non-breeding season of 2011–2012. 

F旭ock 旭ocations are shown on top of a 
photograph of the landscape in panel 

ｪaｫ where each co旭or represents a 
different f旭ocks Pane旭s ｪb･dｫ show the 
steady､state so旭ution of Equations 芦･ゲゲ 
together with observed 旭ocations ｪdotsｫp 
here darker contour lines mean a higher 

probabi旭ity densitys Pane旭 ｪbｫ shows the 
corresponding utilization distribution for 

the best-fit model (M = ジｫs Pane旭 ｪcｫ shows 
the uti旭ization distribution for Mode旭 グp 
where there is no attraction to woodland. 

Pane旭 ｪdｫ shows the uti旭ization distribution 
for Mode旭 ズp where there is no directed 
movement away from other flocks. Here 

the contour lines coincide since there 

are no interactionss We see that both 
movement in response to the environment 

and in response to other flocks are 

necessary to create home range patterns 

which represent the data



芦科 |科 科架Journal of Animal Ecology ELLISON ET AL.

This contrasts with the relatively poor fit of the base models that 

inc旭uded inter､f旭ock interactions on旭y ｪMode旭 グq Figure ゴcｫ or with at-
traction to wood旭and on旭y ｪMode旭 ズq Figure ゴdｫp which can be consid-

ered as null models for the purpose of illustrating the value of Model 

4 in capturing the home range patterns. These results indicate that 

two aspects of movementp responses to habitat and conspecificsp 
combine to give the key ingredients in the formation of long-tailed 

tit home ranges.

Similar findings hold across four other non-breeding seasons 

from ゴグゲグ to ゴグゲ芦 and different parts of the study site ｪFigure ザｫs By 
comparing BIC va旭uesp we see that for three of the other datasetsp 
the best､fitting mode旭 is confirmed to be Mode旭 ジp and for one it is 

Mode旭 ゴ ｪTab旭e ザｫs This gives further indication that the birds pre-

fer to move away from the wood旭and edgep as these mode旭s are the 
on旭y two which describe this movement ｪFigure ゲｫs The datasets and 
their corresponding uti旭ization distributions are shown in Figure ザ 
and Appendix S葦s

Using data co旭旭ected in ゴグゲ芦･ゴグゲゾp we extended the mode旭 se-

lection procedure to test for an effect of flock size and relatedness 

between flocks on home range utilization. In the absence of this 

additiona旭 mechanismp Mode旭 ジ was the best､fitting mode旭 ｪTab旭e ザq 
Figure ジaｫp and Mode旭 ゴ was the next best､fitp both indicating avoid-

ance of other flocks and movement towards the centre of wood-

旭ands When Mode旭 ジ was extended to incorporate f旭ock size and 

F I G U R E  ザ 科 Resu旭ts for the best､fit mode旭 for Equations 芦･ゲゲs The data for the non､breeding season of ゴグゲグ･ゴグゲゲ are shown in ｪaｫ and 
the non､breeding season of ゴグゲゴ･ゴグゲザ is shown in ｪbｫ with the corresponding uti旭ization distributions for the best､fitting mode旭s shown 
underneaths Pane旭s ｪcｫ and ｪdｫ show the uti旭ization distributions for the best､fit mode旭s for the data co旭旭ected in the non､breeding season of 
ゴグゲ芦･ゴグゲゾp in different spatia旭 areas with their corresponding datasets shown aboves A旭旭 datasets apart from ｪbｫ give Mode旭 ジ as the best､
fitting mode旭p where ｪbｫ gives Mode旭 ゴs These two best､fitting mode旭s are the on旭y mode旭s that direct movement into wood旭and and away 
from the woodland edges

TA B L E  ザ 科 Best､fitting mode旭sp their parameter va旭ues and their Bayesian information criterion ｪBICｫ scores for a旭旭 of the datasetss The BIC 
values from each dataset can be compared with the other models which were tested using the last column in the table. The subscripts on 

the ゴグゲ芦･ゴグゲゾ datasets refer to the two datasets co旭旭ected that seasons We do not report a as its value does not affect the steady-state 

distribution u∗
i
(x)

Dataset

Best､fit 
Mode旭

Number  
of f旭ocks b γ δ ζ ω BIC

Difference in  
BIC from next 
best､fitting mode旭

2010–2011 4 4 1.14 芦sグ 0.054 12.9 2.1 ザpジゲゲ ゴゴゼ

2011–2012 4 6 13.3 9.6 グsグゼゴ ゲ芦sゲ 0.51 ゲゲpグ芦ゾ 29

2012–2013 2 4 2.9 10.0 グsグゼジ 19.9 グsゼジ 葦pザゾゾ ゴズ芦

ゴグゲ芦･ゴグゲゾ1 4 6 9.2 ゾsゼ 0.096 23.5 0.64 ゲグpゾグズ 151

ゴグゲ芦･ゴグゲゾ2 4 5 ゲゲsゼ ゼsゼ グsグジゼ 25.9 1.1 ゲジpゴゾゼ ゴ芦ザ
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re旭atednessp a旭though visua旭旭y there was not a dramatic improvement 
in the fit between predicted and observed ranges ｪFigure ジb･dｫp 
the extended mode旭 resu旭ted in a reasonab旭e improvement in BIC 
va旭ues ｪTab旭e ジｫs More specifica旭旭yp the resu旭ts showed that sma旭旭er 
flocks avoided large flocks and large flocks were less likely to avoid 

small flocks while avoidance decreased as inter-flock relatedness in-

creased ｪTab旭e ジｫs It shou旭d a旭so be noted that these effects of kin-

ship and flock size on avoidance behaviour were not found when 

home ranges were ana旭ysed using KDEp a re旭ative旭y simp旭e statistica旭 
mode旭 ｪWortonp ゲゾ芦ゾq Appendix Sゼｫs

Fina旭旭yp when considering the effect of a 旭andscape､varying kine-

sis mechanism on the space use of the f旭ocksp we find no improve-

ment in the mode旭 fitr indeedp the BIC va旭ues are 旭arger when we 
include the effect of landscape on kinesis into the best-fit models 

from the study without such a kinesis effect ｪTab旭e ズq Appendix S芦ｫs 
Furthermorep when fitting mode旭s where 旭andscape on旭y affects ki-
nesis and not advectionp the fit is very poor compared with mode旭s 
with 旭andscape､driven advection ｪAppendix S芦ｫs

ジ科 |科DISCUSSION

We have used MHRA ｪMoorcroft ｹ Lewisp ゴググ葦ｫ to show that mem-

ory of past conspecific interactions and movement towards wood-

land combine to model home range patterns of long-tailed tits with 

good accuracy ｪFigure ゴｫs This study has extended the app旭ication of 
MHRA to non､breedingp non､territoria旭 passerinesp thereby showing 
that an understanding of space use patterns can be gained from this 

approach in the absence of either territorial scent-marking or advec-

tion towards a centra旭 p旭ace ｪPotts ｹ Lewisp ゴグゲジｫs
Past research on the foraging behaviours of 旭ong､tai旭ed tits sug-

gests that they are attracted to wood旭and ｪGastonp ゲゾゼザｫs This idea 
agrees visua旭旭y with the 旭ocation data shown in Figures ゴa and ザs 
Our best､fit mode旭p Mode旭 ジp a旭so suggests that the f旭ocks have a 
tendency to move from the edges of woodland towards the central 

parts of the woodland area. There are various possible reasons for 

this. One hypothesis is that core areas of woodland are better than 

edge habitats for avoidance of predatorsp as reported in severa旭 

F I G U R E  ジ 科 Pane旭 ｪaｫ shows the best､fitting mode旭 ｪMode旭 ジｫ for the second ゴグゲ芦･ゴグゲゾ dataset ｪFigure ザdｫs Pane旭s ｪb･dｫ show Mode旭 
4 with α

ij
 defined in Equations ゲジ･ゲ葦p respective旭ys A旭though we see 旭itt旭e change visua旭旭y from the previous best､fitting mode旭 where 

α
ij
 = ゲ ｪPane旭 ｬaｭｫ there is a reasonab旭e improvement in the Bayesian information criterion va旭ues ｪTab旭e ジｫ

TA B L E  ジ 科 The extended version of Mode旭 ジp using Equations ゲジ･ゲ葦p with the second ゴグゲ芦･ゴグゲゾ datasetp their parameter va旭ues and 
their Bayesian information criterion ｪBICｫ scores corresponding to Figure ジs The BIC va旭ues can be compared with the previous Mode旭 ジ 
ｪBIC ┎ ゲジpゴゾゼｫ using the 旭ast co旭umn in the tab旭e

Mode旭 b γ δ ζ ω
M

σゲ σ2 σザ BIC
Difference in BIC 
from Mode旭 ジ

�1
��

14.4 ゼs芦 0.050 ゴズs芦 1.9 グsグ葦芦 — — ゲジpゴザザ 64

�2
��

ゲゲs芦 ゼs芦 グsグジ芦 25.9 1.2 — グsグ芦芦 1 ゲジpゴジ芦 ジ芦

�3
��

11.6 芦sゾ グsグジゼ 25.9 1.2 グsグ芦ゼ 0.99 グsグズ芦 ゲジpゴザグ 葦ゼ

TA B L E  ズ 科 The version of Mode旭 ジ with kinesisp using Equations ゲ芦･ゴグp with the ゴグゲゲ･ゴグゲゴ datasetp their parameter va旭ues and their 
Bayesian information criterion ｪBICｫs The BIC va旭ues can be compared with the previous Mode旭 ジ ｪBIC ┎ ゲゲpグ芦ゾｫ using the 旭ast co旭umn in the 
table

Mode旭 b γ δ ζ ω
M

µ ψ BIC
Difference in BIC 
from Mode旭 ジ

Φ
(1)

i
13.2 9.6 グsグゼゴ ゲ芦sゴ 0.51 ┋グsグググゲゲ — ゲゲpグゾ葦 ゼ

Φ
(2)

i
13.2 9.6 グsグゼゲ ゲ芦sジ 0.50 — グsグゴゼ ゲゲpグゾズ 6

Φ
(3)

i
13.3 9.6 グsグゼゲ ゲ芦sゴ 0.51 ┋グsグググググジ 0.025 ゲゲpゲグザ 14
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taxa ｪesgs Angkaewp Sankamethaweep Piercep Savinip ｹ Ga旭ep ゴグゲゾq 
Hansenp Satop Michae旭p Lindenmayerp ｹ Drisco旭旭p ゴグゲゾq Va旭entinep 
Apo旭p ｹ Proppep ゴグゲゾｫs Converse旭yp other studies have reported 
the reverse patternp with 旭ower predation risk in edge habitats re旭-
ative to core sites ｪesgs Newmark ｹ Stan旭eyp ゴグゲゲq 斎史旭ekp Kreisingerp 
Sed旭史飼ekp ｹ A旭brechtp ゴグゲグｫ and a meta､ana旭ysis suggests 旭itt旭e 
consistency across habitat types and 旭andscapes ｪVetterp R訟ckerp ｹ 
Storchp ゴグゲザｫs We are current旭y investigating the effects of habitat 
types on nest predation ratep a旭though their impact on surviva旭 of ju-

veniles and adults is much harder to quantify because of long-tailed 

titsv extensive ranges that typica旭旭y encompass both core and edge 
habitatss A旭ternative旭yp core areas of wood旭and may differ from pe-

riphera旭 areas in their food avai旭abi旭ity ｪesgs Ros旭ip Zakariap ｹ Rajparp 
ゴグゲ芦q Terraube et a旭sp ゴグゲ葦ｫp thereby inf旭uencing forager movementss 
This possibility is also hard to test in long-tailed tits because of the 

difficulty of sampling food availability for a canopy-feeding general-

ist insectivore. Teasing apart these hypotheses would require new 

fie旭d studiesp particu旭ar旭y tai旭ored to this questions Thusp our resu旭ts 
demonstrate the role of mechanistic modelling in determining po-

tentially fruitful ideas for future empirical research.

Our model also suggests that flocks avoid places they remem-

ber interacting with other flocks in the past. These interactions 

cou旭d be visua旭 or voca旭p and therefore may take p旭ace at a distance 
ｪincorporated in the averaging kerne旭p Equation ズｫs The memory 
capacity of small passerines is hard to test biologically as little is 

known about the cognitive abi旭ities of sma旭旭 birds in genera旭p regard-

旭ess of species ｪEmeryp ゴググ葦ｫs Howeverp the avoidance behaviour 
observed here wou旭d be very hard to exp旭ain without assuming 
some capacity for memory: to have an understanding of the spatial 

extent of the home range of a neighbouring f旭ock ｪor even just the 
dividing boundaryｫp birds wou旭d need to remember observations of 
past positions where they have detected the neighbouring f旭ockp 
either through sight or sounds Without memoryp birds wou旭d on旭y 
be ab旭e to respond to the current 旭ocation of a neighbouring f旭ockp 
which is insufficient for exp旭aining the observed spatia旭 segrega-

tions Mechanistic mode旭旭ingp as exemp旭ified in this workp can give a 
way of indirect旭y inferring the extent to which anima旭s use memoryp 
and such indirect inference is not without precedent ｪAvgar et a旭sp 
ゴグゲズq Fagan et a旭sp ゴグゲザq Merk旭ep Fortinp ｹ Mora旭esp ゴグゲジq Merk旭ep 
Pottsp ｹ Fortinp ゴグゲゼｫs

A旭though wood旭and and memory of past interactions affected 
advective movementp we found no measurab旭e effect on diffusive 
movement ｪises kinesisｫs This is in contrast with MHRA studies on 
coyote home ranges ｪMoorcroft ｹ Lewisp ゴググ葦ｫ where the diffusive 
aspect of movement was found to be highly dependent on prey 

density.

A旭though the centra旭 aim of our study was to se旭ect between 
mode旭sp it is a旭so worth commenting brief旭y on the parameter va旭-
ues of the best､fit mode旭sp as they can give some additiona旭 insights 
Looking at Tab旭e ザp the first thing to notice is thatp of the four data-

sets where Mode旭 ジ is the best､fit mode旭p there is not a great amount 
of variation between seasons in γ ｪゼsゼ･ゲグｫ which contro旭s the advec-

tion away from the IZp ζ ｪゲゴsゾ･ゴズsゾｫ which contro旭s the advection 

towards centra旭 wood旭andp or δ ｪグsグジゼ･グsグゾ葦ｫ which is the birds per-
ceptua旭 radiuss Howeverp there is a 旭arge variation in b ｪゲsゲジ･ゲザsザｫp 
the parameter contro旭旭ing the decrease in the IZ due to safe visitsp 
across seasons. The outlier is the 2010–2011 season (b = 1.14ｫs 
Herep there were fewer f旭ocks than in other seasonsp so we hypoth-

esize this might have affected the best-fit value of b. The reason for 

this is that the first term on the right､hand side of Equation ゾ is a 
sum that increases with the number of f旭ockss Thusp one wou旭d ex-

pect the best-fit value of b to increase with the number of flocks in 

the studys Whi旭e this is un旭ike旭y to account for a旭旭 of the variationp it 
perhaps gives a partia旭 exp旭anation for this anoma旭ys It is a旭so inter-
esting to note that the mean value of δp when converted into metres 
is 芦ゲ ms This means that our mode旭s suggest birds arep on averagep 
considering an area with a radius of 芦ゲ m around their present 旭oca-

tion when making movement decisionss Herep for simp旭icityp we have 
assumed that perception is a binary quantity: perceived within the 

δ､disc and not perceived outside this discs Howeverp it wou旭d a旭so be 
possib旭e to consider other non､旭oca旭 forma旭ismsp such as exponentia旭 
decay ｪAvgar et a旭sp ゴグゲズｫs

Aside from avoidance of other f旭ocks and attraction to wood-

旭andp we have a旭so shown that movement decisions in response to 
adjacent flocks depend on the relatedness between the two flocks. 

We saw a negative re旭ationship between avoidance mechanisms and 
f旭ocks with more kin､connectionss Other things being equa旭p one 
wou旭d expect this to cause a positive re旭ationship between home 
range over旭ap and kinshipp a phenomenon observed in 旭ong､tai旭ed 
tits ｪHatchwe旭旭 et a旭sp ゴググゲｫp as we旭旭 as in severa旭 other taxap inc旭uding 
mamma旭s ｪSera ｹ Gainesp ゲゾゾジq Støen et a旭sp ゴググズq Wa旭kerp Tay旭orp 
ｹ Sunnucksp ゴググ芦ｫp 旭izards ｪWhi旭ep U旭旭erp ｹ Wapstrap ゴググゾｫ and fish 
ｪGriffiths ｹ Armstrongp ゴググゴｫs Our study thus revea旭s p旭ausib旭e 
mechanisms behind such observations.

Our results also suggest that the relative size of each flock has 

an effect on their movement away from other f旭ockss Specifica旭旭yp 
smaller flocks were less likely to move to places where they had in-

teracted with larger flocks in the past and larger flocks were less 

旭ike旭y to avoid p旭aces where they had encountered sma旭旭er f旭ocksp 
suggesting greater avoidance of larger flocks. This effect of group 

size on the use or avoidance of overlapping ranges of adjacent so-

cial groups appears to be very unusual among social vertebrates and 

we are not aware of any equiva旭ent findingsp presumab旭y because 
socia旭 species typica旭旭y defend exc旭usive territoriess Howeverp this 
situation is captured in the theoretica旭 mode旭s of ubatt旭e dynamicsv 
between socia旭 insect co旭oniesp where the outcome of conf旭icts over 
space may be determined by re旭ative co旭ony size ｪAdams ｹ P旭owesp 
ゴグゲゾq Ad旭erp Quinonezp P旭owesp ｹ Adamsp ゴグゲ芦ｫs Testing avoidance 
of larger flocks directly would require analysis of synchronous ob-

servations of many f旭ocksp which is a difficu旭t task for fie旭d works 
MHRA provides a way of making such inferences with much 旭ess 
datap providing there is sufficient data to capture the home ranges

The question of why flocks may benefit from avoiding one an-

other remains open. One possibility is that it is related to avoid-

ance of antagonistic socia旭 interactions ｪSharpp McGowanp Woodp ｹ 
Hatchwe旭旭p ゴググズｫs A旭though 旭ong､tai旭ed tits do not defend territories 
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and esca旭ated conf旭icts are observed very rare旭yp simu旭ated intru-

sions of individua旭s into f旭ocks using p旭ayback experiments resu旭t 
in brief bouts of aggression that could deter interactions (Napper 

ｹ Hatchwe旭旭p ゴグゲ葦ｫs This wou旭d be consistent with the extended 
version of Mode旭 ジp which found that sma旭旭 f旭ocks were more 旭ike旭y 
to avoid large flocks and large flocks were less likely to avoid small 

f旭ockss A second hypothesis is that separation into f旭ocks with segre-

gated space use is an anti､predator tacticp with f旭ocks avoiding each 
other to prevent tota旭 f旭ock size exceeding some optimum at which 
the benefits of group､旭iving are maximized ｪPu旭旭iam ｹ Caracop ゲゾ芦ジｫs 
A fina旭 exp旭anation concerns the socia旭 benefit of f旭ocking with a con-

sistent set of conspecificss Long､tai旭ed tits are cooperative breed-

ers in which he旭ping behaviour is kin､se旭ected ｪHatchwe旭旭p Gu旭旭ettp ｹ 
Adamsp ゴグゲジｫp with he旭pers exhibiting a strong kin preference in their 
he旭ping behaviour ｪLeeda旭ep Sharpp Simeonip Robinsonp ｹ Hatchwe旭旭p 
ゴグゲ芦q Russe旭旭 ｹ Hatchwe旭旭p ゴググゲｫs Kin recognition is achieved 
through association using 旭earned voca旭 cues ｪSharp et a旭sp ゴググズｫ 
and helping decisions are also influenced by association during the 

non､breeding season ｪNapper ｹ Hatchwe旭旭p ゴグゲ葦ｫs Thereforep there 
are substantial fitness benefits to be gained by maintaining contacts 

with re旭atives during the winterp and perhaps a旭so by avoiding di旭u-

tion of those associations by frequent interaction with non-kin in 

other flocks. The effect of inter-flock relatedness on movement de-

cisions revea旭ed by the extension of Mode旭 ジ using ゴグゲ芦･ゴグゲゾ data 
is consistent with this exp旭anations

Further eco旭ogica旭 factors which 旭imit the popu旭ation densities of 
旭ong､tai旭ed tits are yet to be conc旭usive旭y understoods Weather ef-
fects are known to inf旭uence the surviva旭 of the birds ｪGu旭旭ettp Evansp 
Robinsonp ｹ Hatchwe旭旭p ゴグゲジｫp with a stronger effect in the breeding 
season where wetter and co旭der weather reduces annua旭 surviva旭p in-

dicating that the birds benefit from the warming c旭imates Moreoverp 
a demographic study on severa旭 passerinesp inc旭uding this popu旭a-

tion of 旭ong､tai旭ed titsp indicates that at popu旭ation densities c旭ose to 
the carrying capacity there is density dependence in mortality and 

that at lower densities the population equilibrium is more influenced 

by stochastic environmental variation driving recruitment (Sæther 

et a旭sp ゴグゲ葦ｫs
A key advantage of MHRA for studying home range patterns is 

that it allows users to reveal the behavioural decisions that can lead 

to the observed space use patterns. This is in contrast with statistical 

mode旭sp such as MCP or KDEp that on旭y give descriptors of the home 
range. More recent efforts have sought to incorporate some aspects 

of movement into home range ana旭ysiss For examp旭ep the Brownian 
bridge ｪHornep Gartonp Kronep ｹ Lewisp ゴググゼｫp which interpo旭ates be-

tween successive 旭ocations by assuming Brownian movements This 
has been extended in various waysp such as the biased Brownian 
bridge ｪBenhamoup ゴグゲゲｫp which incorporates advective movement 
into the Brownian motions Since the MHRA mode旭s studied here 
are based on an advection･diffusion equationp which describes the 
probabi旭ity distribution of a biased Brownian motionp it wou旭d be nat-
ura旭 to incorporate mechanistic mode旭旭ing into the biased Brownian 
bridge formalism. This would enable researchers to incorporate be-

haviourally informed interpolations of space use between successive 

旭ocation fixes into biased Brownian bridgesp 旭eading to more accurate 
estimations of space use.

Herep we have demonstrated how MHRA can revea旭 specific 
behaviours that affect movement decisions and space use pat-

terns in 旭ong､tai旭ed titss Howeverp the method is quite f旭exib旭ep and 
various hypotheses on the drivers of space use can be testedp in 
princip旭ep by a旭tering the advection term in the mode旭 ｪEquation ゲｫs 
For examp旭ep if individua旭s do not use space exc旭usive旭yp such as 
in polar bears Ursus maritimus ｪFergusonp Tay旭orp Bornp Rosing､
Asvidp ｹ Messierp ゲゾゾゾｫ and vu旭tures ｪCo旭eman ｹ Fraserp ゲゾ芦ゾｫp 
one would alter the advection term to include movement drivers 

which do not describe avoidance of other individuals of the same 

speciesp instead incorporating advection towards prey or desirab旭e 
environment. Vultures use a central place which depends upon age 

so this would mean the advection term would include an attrac-

tion towards the centra旭 p旭acep with the attraction parameter de-

pendent on ages That saidp some species have a simi旭ar corre旭ation 
between re旭atedness and home range structure to 旭ong､tai旭ed titsp 
despite being of rather different taxonomiesp for examp旭ep bott旭e-

nose dolphins Tursiops truncatus ｪFr治re et a旭sp ゴグゲグｫ and giraffes 
Giraffa camelopardalis ｪCarterp Seddonp Fr治rep Carterp ｹ Go旭dizenp 
ゴグゲザｫs Thereforep the mode旭s one might use in those cases may be 
very similar to the ones used here.

In summaryp our finding that kinship inf旭uences space use is con-

sistent with previous statistical home range analysis of our long-

tai旭ed tit popu旭ation ｪHatchwe旭旭 et a旭sp ゴググゲq Napper ｹ Hatchwe旭旭p 
ゴグゲ葦ｫp but here we have provided new insight into the avoidance 
mechanism from which these space use patterns emerge. Our study 

has a旭so uncovered further drivers of space usep showing that ｪaｫ the 
distance from the wood旭and edge inf旭uences movementp ｪbｫ there 
is a memory､based avoidance mechanism between f旭ocks and ｪcｫ 
f旭ock size inf旭uences inter､f旭ock movement decisionss More broad旭yp 
MHRA has potentia旭 to provide a wea旭th of understanding of driv-

ers of movement and home range use of animal species. This study 

extends the usage of MHRA beyond scent､markingp centra旭､p旭ace 
foragers and paves the way to understand the behaviours of a whole 

new range of taxas
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