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Abstract. Data-model integration plays a critical role in as-
sessing and improving our capacity to predict ecosystem dy-
namics. Similarly, the ability to attach quantitative statements
of uncertainty around model forecasts is crucial for model
assessment and interpretation and for setting field research
priorities. Bayesian methods provide a rigorous data assimi-
lation framework for these applications, especially for prob-
lems with multiple data constraints. However, the Markov
chain Monte Carlo (MCMC) techniques underlying most
Bayesian calibration can be prohibitive for computationally
demanding models and large datasets. We employ an alterna-
tive method, Bayesian model emulation of sufficient statis-
tics, that can approximate the full joint posterior density, is
more amenable to parallelization, and provides an estimate
of parameter sensitivity. Analysis involved informative pri-
ors constructed from a meta-analysis of the primary litera-
ture and specification of both model and data uncertainties,
and it introduced novel approaches to autocorrelation correc-
tions on multiple data streams and emulating the sufficient
statistics surface. We report the integration of this method
within an ecological workflow management software, Pre-
dictive Ecosystem Analyzer (PEcAn), and its application and
validation with two process-based terrestrial ecosystem mod-
els: SIPNET and ED2. In a test against a synthetic dataset,
the emulator was able to retrieve the true parameter values.
A comparison of the emulator approach to standard “brute-
force” MCMC involving multiple data constraints showed
that the emulator method was able to constrain the faster

and simpler SIPNET model’s parameters with comparable
performance to the brute-force approach but reduced compu-
tation time by more than 2 orders of magnitude. The em-
ulator was then applied to calibration of the ED2 model,
whose complexity precludes standard (brute-force) Bayesian
data assimilation techniques. Both models are constrained af-
ter assimilation of the observational data with the emulator
method, reducing the uncertainty around their predictions.
Performance metrics showed increased agreement between
model predictions and data. Our study furthers efforts to-
ward reducing model uncertainties, showing that the emula-
tor method makes it possible to efficiently calibrate complex
models.

1 Introduction

Terrestrial ecosystems continue to be a major source of un-
certainty in future projections of the global carbon cycle.
Model predictions disagree on the size and nature of the
ecosystem response to novel conditions expected under cli-
mate change (Friedlingstein et al., 2014). This is partly due to
different assumptions and representations of ecosystem pro-
cesses in models (Fisher et al., 2014; Medlyn et al., 2015)
and partly due to lack of constraints on uncertainties associ-
ated with modeled processes and parameters (Dietze, 2017b).
Key to improving both model structure and calibration is
grounding models in data through parameter data assimila-
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tion (PDA), which refers to the calibration of model param-
eters through statistical comparisons between models and
real-world observations to improve the match between them
(Richardson et al., 2010). However, despite having more
models and data than ever before, we still have not success-
fully reduced the uncertainties in our predictions because of
the technical difficulties of linking models and data together
(Hartig et al., 2012; Fisher et al., 2014). This is particularly
true for regional- and global-scale models, which are com-
putationally complex and need to be calibrated against large
datasets. Three specific technical challenges that need to be
addressed in PDA are multiple data constraints, partitioning
of uncertainties, and model complexity.

In Bayesian calibration it is possible to use more than one
type of data to simultaneously constrain multiple output vari-
ables in a model. Using multiple data constraints is particu-
larly helpful because model errors can compensate for each
other and single variables often do not provide robust con-
straints (Raupach et al., 2005; Williams et al., 2009). How-
ever, implementing multiple data constraints is challenging
because data are available at different spatial and temporal
scales, with large differences in observational uncertainties
and data volume among measurement types (MacBean et al.,
2017; Keenan et al., 2013). The calibration of model param-
eters is sensitive to which data are used, how different data
sources are combined, and how uncertainties are accounted
for (Richardson et al., 2010; Keenan et al., 2011). As opposed
to piecewise evaluation of different parts of the model against
different datasets, a Bayesian framework allows the evalu-
ation of the whole model at once against all data sources,
reflecting the connections between variables and the covari-
ances among parameters (Dietze, 2017a).

The Bayesian approach also distinguishes among paramet-
ric, model structural, and data uncertainties, which is criti-
cal for ecological forecasting. Parameter uncertainty refers to
the uncertainty about the true values of the model parameters
due to data deficiency and model simplification (McMahon
et al., 2009; van Oijen, 2017). As models are simplified rep-
resentations of reality, it is often not possible to measure the
true value of an ecosystem model parameter precisely in the
field, regardless of the measurement errors (van Oijen, 2017).
However, measurements can still provide estimates for pa-
rameter values that make the model represent the reality bet-
ter (van Oijen, 2017). Hence, it is possible to reduce param-
eter uncertainty with more measurements, conditioned upon
the model structure and the measurement error (van Oijen,
2017; Dietze, 2017a). Therefore, the parameter uncertainty
should be reflected by probability distributions and propa-
gated into model predictions.

By contrast, process or model structural uncertainty refers
to the uncertainty about how to represent ecological pro-
cesses in models. As every model is a simplification of re-
ality, there will always be underrepresented processes or in-
sufficiently modeled interactions in ecological models (van
Oijen, 2017; McMahon et al., 2009; Clark, 2005). With more

observations, we can advance our theoretical understanding
and better characterize ecological processes, but process un-
certainty does not necessarily decrease with more data, the
way parameter uncertainty does (Dietze, 2017a; Gupta et al.,
2012; Clark, 2005). As process uncertainty is part of our im-
perfect models, it is part of the uncertainty associated with
the model predictions.

Unlike process and parameter uncertainties, data (observa-
tion) uncertainty does not need to be propagated into model
predictions. Observation error is a result of the limited pre-
cision and accuracy of the measurement instruments; hence,
the uncertainty about it is not part of the process that we are
trying to model (van Oijen, 2017; McMahon et al., 2009).
In Bayesian PDA, observation uncertainty should be treated
independently of the deviations of model predictions from
data as part of the likelihood for observations to inform
model predictions without biases (Dietze, 2017a). For a more
in-depth terminology for these concepts in the context of
process-based models and Bayesian methods, see the review
by van Oijen (2017).

Despite the advantages to the Bayesian paradigm when
it comes to estimating parameters for ecosystem models,
most of this research remains focused on computationally
inexpensive models (such as SIPNET, Sacks et al., 2006;
DALEC, Keenan et al., 2011; Lu et al., 2017; FöBAAR,
Keenan et al., 2013). This is largely due to the relatively
high computational costs of Markov chain Monte Carlo
(MCMC) techniques underlying most Bayesian computa-
tion. Such techniques can require models to be evaluated
104–107 times, which can be prohibitively expensive for
even simple models, let alone complex simulation models
that may take hours to days to complete a single evalua-
tion. In this aspect, the Markovian nature of MCMC tech-
niques, which requires that the computation be performed
sequentially, proves to be a fundamental limitation. By con-
trast, high-performance computing environments are opti-
mized for parallel computation and advances in computing
power are increasingly being made in terms of number of
processors rather than CPU speed. Thus, it is particularly ad-
vantageous to consider techniques that are both parallel in
nature and which have substantial “memory” (i.e., they use
the results from all previously evaluated parameter sets in
proposing new parameters rather than just the previous or
last few points).

One possible solution to this challenge is through model
emulation (Sacks et al., 1989). An emulator (also referred
as “surrogate” in the literature) is a statistical model that
is used in place of the full model in cases in which an ex-
haustive analysis of the full model would be computationally
prohibitive. In the emulator approach, we first propose a set
of parameter vectors according to a statistical design (each
parameter vector defines a point in multivariate parameter
space). Then we run the full model with this set of param-
eter vectors and compare the model outputs with data. Next,
we fit a statistical approximation through the design points
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Figure 1. Comparison of brute-force and emulator approaches for a univariate example. The computationally costly step of running the model
is able to be parallelized for the emulator, whereas in the brute-force approach it needs to be run at every MCMC iteration sequentially. The
emulator is built on the pairs of the initial parameter set (pink points on x axis; P ) and the sufficient statistics (T ) values on the y axis.
These design points in the P –T space, or knots (black dots), are obtained by evaluating the full model. Next, a Gaussian statistical process is
fitted (blue solid line) with error estimates for prediction (red dashed lines). Once the emulator is constructed, a new parameter value will be
proposed (green box on the x axis). Finally, values that the response variable can take (green segment) given the newly proposed parameter
will be estimated using the emulator.
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(a.k.a. knots; see black dots in Fig. 1), which we obtain by
evaluating the model. Once built, emulators generally take
far less time to evaluate than the model itself; therefore the
emulator is then used in place of the full model in subsequent
analyses, i.e., it could be passed to a MCMC algorithm. In
comparison to the 104–107 sequential model runs required
for MCMC, far fewer model runs are required to construct
the emulator, and these runs can be parallelized, as the de-
sign points in parameter space are proposed at the beginning
or iteratively in large batches.

Emulators are constructed by interpolating a response sur-
face between the knots where the model has been run. Previ-
ous studies on emulation of biosphere models mostly focused
on emulating the model outputs (Kennedy et al., 2008; Ray
et al., 2015; Huang et al., 2016). However, comparing model
outputs to “big data” requires emulating a large, nonlinear
multivariate output space. Furthermore, for the purpose of
model calibration what we are actually interested in is not
the output space itself but the mismatch between the model
and the data, which can typically be summarized by much
lower dimensional statistics (e.g., sum of squares).

Instead of constructing an emulator for the raw model out-
put, we adopt the approach of constructing an emulator of the
likelihood – the statistical assessment of the probability of
the data given a vector of model parameters, which forms the
basis for both frequentist and Bayesian inference. Emulat-
ing the likelihood has the advantage that likelihood surfaces
are generally smooth and univariate (Oakley and Youngman,
2017). A further novel generalization we introduce in this
study is to emulate the sufficient statistics of the likelihood
that contains all the information to calculate the desired like-
lihood rather than the likelihood itself. This facilitates esti-
mating the statistical parameters in the likelihood, such as
the residual error.

Overall, the goal of this study is to validate the emulator’s
performance against brute-force MCMC methods in terms
of parameter estimation and assess the trade-offs in clock-
time and emulator approximation errors. We first tested the
emulator performance with the simplified Photosynthesis
and Evapotranspiration (SIPNET) model against a synthetic
dataset for which we know the true values. Next, we com-
pare both brute force and the emulator for calibrating SIP-
NET against data from the AmeriFlux Bartlett Experimental
Forest site, a temperate deciduous forest in the northeastern
US. Third, we use the emulator technique to calibrate the
Ecosystem Demography model (version 2, hereinafter ED2),
whose computational demands preclude MCMC calibration.
Finally, we evaluate the scaling properties of the emulator
method and discuss its potential limitations and future appli-
cations.

2 Methods

2.1 Emulator-based calibration

A primary methodological focus of this paper is on the tech-
nique of parameter data assimilation using a model emula-
tor. The general workflow of the emulator method (Fig. 1) is
given in Algorithm 1.

Algorithm 1 Emulator workflow

(1) Propose initial Nknots parameter vectors.
(2) Run full model with each parameter vector (parallelizable
over Nknots).
(3) For each model run (K), compare each dataset to the ap-
propriate model output variable (V ) and calculate a sufficient
statistic (TV,K ) summarizing model error.
(4) Fit a separate Gaussian process (GPV ) model for each TV to
construct a response surface describing how model error varies
across parameter space (parallelizable over V ).
(5) Perform MCMC using the emulators.
for i = 1 to NMCMC do

(5a) Propose a new vector of process-model parameter val-
ues.
(5b) Use GPV to draw both the current and proposed TV
with interpolation uncertainty (parallelizable).
(5c) Calculate likelihoods from T .
(5d) Calculate current and proposed posterior values, Pi and
Pi−1.
(5e) Accept or reject according to the Metropolis–Hastings
rule, Pi/Pi−1.
(5f) Gibbs update statistical parameters conditional on
process-model parameters.

end for
(6) (optional) Refine emulator by proposing new design points,
goto (2).

As a first step (1), it is critical to decide carefully where in
parameter space the full model will be evaluated. This step is
nontrivial because the space encompassed increases rapidly
with the number of parameters, making exhaustive searches
of the parameter space impractical. Furthermore, the total
number of model evaluations is usually limited due to the
computational costs of running the full model. As the emu-
lator is an approximation, adding more design points to ex-
plore the parameter space means less approximation error.
However, due to the trade-off between the accuracy and the
clock time, we also do not want to propose too many knots.
Therefore, we need to choose a design that maximizes in-
formation from a limited number of runs. Proposing points
at random is inefficient because some points will be close to-
gether and thus uninformative – in practice a sampling design
that is overdispersed in parameter space is preferable. Here,
we use a Latin hypercube (LHC) design whereby a sequence
of values is specified for each parameter that has the same
length as the total number of samples and then each sequence
is randomly permuted independent of the others to construct
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the overall design matrix. In the current application, the se-
quences for each variable are constructed to be uniform quan-
tiles of the prior distributions (see Sect. 2.3), which results in
greater sampling in the regions of higher probability and less
sampling in the tails for nonuniform prior distributions.

The second step (2) is to evaluate the full model using the
proposed parameter vectors, and it is the only step in which
we run the full model. As these model runs are indepen-
dent of each other, they can be performed in parallel. Next
(step 3), a sufficient statistic (T ) is calculated by compar-
ing each model output to each dataset (Fig. 1). Statistic T
is sufficient for the job of estimating the unknown parame-
ters “when no other statistic calculated from the same sam-
ple provides any additional information” (Fisher, 1922). We
treat the deviations of model predictions from data in terms
of sufficient statistics (T ) instead of the likelihood itself be-
cause we want to estimate data-model parameters, such as
the residual error, as part of the MCMC. For example, as-
sume the residuals are distributed Gaussian. In this case, T
for a Gaussian likelihood would be the sum of squared resid-
uals, 6(yi −µi)2, where y is the observation and µ is the
model prediction.

L=

n∏
i=1
N(yi | µ,τ)=

n∏
i=1

√
τ

√
2π

exp
(
−τ(yi −µ)

2

2

)
(1)

lnL∝
n

2
ln(τ )−

τ

2

n∑
i=1
(yi −µ)

2
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T

(2)

From Eq. (2), if we know T , we can calculate the likelihood
without needing the full dataset and the model outputs. This
allows us to not only accept or reject a proposed parameter
vector (5e) but also sample the precision parameter, τ , con-
ditional on that parameter vector (step 5f). Such a T can be
found for other likelihood functions as well.

This approach requires constructing an emulator for each
dataset (Step 4) instead of building one emulator on the over-
all likelihood surface. For example, if carbon (C) and water
(H2O) fluxes are used for constraining the model parame-
ters, we need to build one emulator that estimates the TC and
another one that estimates TH2O. Then, at each iteration of
the MCMC, we can update the model errors (τC and τH2O)
for each response variable conditional upon the emulated T .
However, both the construction and evaluation of the emula-
tor for each T can be carried out in parallel; therefore, build-
ing more than one emulator does not defy the purpose of re-
ducing computational costs.

In this study, we fitted a Gaussian process (GP) model as
our statistical emulator, using the mlegp (v3.1.4) package in
R (Dancik, 2013). GP assumes that the covariance between
any set of points in parameter space is multivariate Gaus-
sian, and the correlation between points decreases as the dis-
tance between them increases (mlegp uses a power exponen-
tial autocorrelation function). We chose a GP model as our

emulator because of its desirable properties. First, because
GP is an interpolator rather than a smoother it will always
pass exactly through the design points. Second, GP allows
for the estimation of uncertainties associated with interpola-
tion – uncertainty for a GP model will converge smoothly to
zero at the design points (knots, Fig. 1). Third, among non-
parametric approaches, GP is shown to be the best emulator
construction method (Wang et al., 2014). The GP model is
essentially the anisotropic multivariate generalization of the
Kriging model commonly employed in geostatistics (Sacks
et al., 1989). Because we are dealing with a deterministic
model, we assume that the variance at a lag of distance zero,
known as the nugget in geostatistics, is equal to zero, but this
assumption could be relaxed for stochastic models. We do
not go into further details of GP modeling, or its comparison
to other emulator methods, since both are well documented
elsewhere (e.g., Kennedy and O’Hagan, 2001; Rasmussen
and Williams, 2006).

Once constructed, we pass the emulator to an adaptive
Metropolis–Hastings algorithm (Haario et al., 2001) with
block sampling, i.e., proposing new values for all parameters
at once (step 5). In the MCMC, we use the GP to estimate
T for both the current and the proposed parameter vector at
each iteration (5b). GP provides a mean and the variance for
the estimated values (here T ) given the parameters. To prop-
agate this interpolation uncertainty, it is important to draw
the T stochastically from the GP and draw new values for
both the current and proposed parameter sets at each itera-
tion. Once the process-model parameters are updated accord-
ing to the Metropolis ratio of current and proposed posteri-
ors, statistical parameters of the likelihood can be updated via
Gibbs sampling conditional upon the updated process-model
parameters (5f).

To build the emulator, the parameter vectors need not be
dependent on one another in a Markovian sense. This is
in contrast with traditional optimization and MCMC algo-
rithms that only leverage the current vector of parameter val-
ues when proposing new parameters. The independence of
runs here allows us to efficiently leverage all previous runs,
in addition to the model evaluations from this step, to it-
eratively refine the emulator (step 6). Iteratively proposing
additional knots over multiple rounds can be more effective
because each round refines our understanding of where the
posterior is located in parameter space, allowing new knots
to be proposed where they provide the most new informa-
tion. In this study, new knots were added by proposing 10 %
of the new parameter vectors from the original prior distribu-
tion and 90 % from the joint posterior of the previous emula-
tor round (via resampling the MCMC samples in between the
rounds). Unless otherwise noted, all emulator calibrations in
this study were run in three rounds, each with 100 K itera-
tions of three MCMC chains, using a total of p3 knots for p
parameters.

We compared the emulator approach to the Differential
Evolution Markov Chain with snooker update algorithm
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(DREAM(ZS)) as it is one of the fastest converging al-
gorithms known in the literature (Laloy and Vrugt, 2012).
The implementation of DREAM(ZS) was provided by the
BayesianTools package (Hartig et al., 2017). These package
functions were called within the brute-force data assimila-
tion framework of PEcAn (v1.4.10), which is an ecosystem
modeling informatics system (LeBauer et al., 2013). The em-
ulator framework has also been implemented in PEcAn. Both
ecosystem models (see next section) used in this study were
coupled to PEcAn and the specific runs reported in this paper
are given in Appendix A, Tables A7–A8. All PEcAn code is
available on GitHub (https://github.com/PecanProject/pecan,
last access: 30 September 2018), and the parameter data
assimilation (PDA) modules developed here are accessi-
ble via modules/assim.batch and modules/emulator. In addi-
tion, a virtual machine version of PEcAn with model inputs
and code required to reproduce the present study is avail-
able online (http://pecanproject.org, last access: 30 Septem-
ber 2018).

2.2 Multi-objective parameterization

We focus on three joint data constraints from Bartlett Exper-
imental Forest, NH (Lee et al., 2018; also see Appendix A,
“Study site”): net ecosystem exchange (NEE) and latent heat
flux (LE) as measured by the eddy-covariance tower, and soil
respiration (SoilResp) as sampled within the inventory plots.

NEE and LE data were filtered for the low friction ve-
locity, u∗, values to eliminate time periods of poor mixing.
A conservative u∗ of 0.40 was selected, which results in an
elimination of 76 % of the nighttime data. Flux data were
not gap-filled because this results in a model–model com-
parison rather than a model–data comparison. The error dis-
tribution of flux data is known to be both heteroscedastic,
with variance increasing with the magnitude of the flux, and
to have a double exponential distribution (Richardson et al.,
2006; Lasslop et al., 2008). In previous studies, the error dis-
tributions of high flux magnitudes and fluxes averaged over
time were also argued to be approximately Gaussian (Lasslop
et al., 2008; Richardson et al., 2010). However, as we assim-
ilate all flux magnitudes at a half-hourly time step and as the
errors of flux data have heavy tails like a Laplacian distribu-
tion (i.e., big errors are more common than they would be un-
der a Gaussian distribution), we modeled the error distribu-
tions of NEE and LE fluxes as an asymmetric heteroscedastic
Laplacian distribution:

Fluxdata ∼ Laplace(Fluxmodel,α0+α1 ·Fluxmodel) (3)

α1 =

{
αp, if Fluxmodel ≥ 0
αn, otherwise ,

where Laplace(µ, α) refers to the Laplace distribution that
models the distribution of absolute differences between
model prediction and data. Here we accounted for the fact
that flux errors scale differently for positive and negative

fluxes by using different scale parameters αp and αn, respec-
tively.

Because NEE and LE data are time series, we cannot treat
each residual as independent. To reduce the influence of er-
ror autocorrelation on parameter estimation, we correct the
likelihoods by inflating the variance terms by N/Neff, where
N is the sample size and Neff is an estimate of the effec-
tive sample size based on the autocorrelation of the resid-
uals. However, estimating Neff is not straightforward to do
within the MCMC because, paradoxically, a poor model pre-
diction would end up with higher autocorrelation on the
residuals, making the Neff smaller and the values producing
those model outputs more likely. We also cannot calculate
the autocorrelation on the data itself because flux data con-
tain considerable observation error, making the Neff larger
than it should be (i.e., also paradoxically indicating that the
data provide more information the larger the observation er-
ror). To address these apparent paradoxes we propose a two-
step approach to estimating effective sample size. First, the
latent unobserved “true” fluxes were estimated via a state-
space time series model fitted to the flux data, which allows
separation of observation error from process variability (Di-
etze, 2017b). So as to not impose external structure on this
filtering, we use a random walk process model. Second, the
AR(1) autocorrelation coefficient, ρ, was estimated on the
latent state time series and Neff was estimated as

Neff =N
(1− ρ)
(1+ ρ)

. (4)

For soil respiration (Rd: data, Rm: model), we assume a
Gaussian likelihood with a multiplicative bias, k, and a vari-
ance σ 2

R , which takes the form Rd ∼N(k ·Rm, σ 2
R). The bias

term is included to account for the scaling from the dis-
crete soil collars to the stand as a whole (van Oijen et al.,
2011). This term was also introduced because observed soil
chamber fluxes were typically over twice the ecosystem res-
piration estimated from the eddy-covariance tower (Phillips
et al., 2017). As in previous studies, this parameter is also
estimated in the calibration (van Oijen et al., 2011), using
a standard lognormal distribution as its prior. While the in-
troduction of the bias term makes it impossible for these
data to constrain the magnitude of soil carbon fluxes, it does
provide information on the shape of the functional response
(e.g., temperature dependencies). Due to the coarser time
step, small sample size (n= 39), and the introduction of the
bias term, no additional autocorrelation corrections were ap-
plied to the soil respiration data.

2.3 Model information and priors

The two models used in this study are SIPNET (Braswell
et al., 2005) and ED2 (Medvigy et al., 2009). In the main
text we will only describe the aspects of the models related
to their calibration; further details of the models and their
settings are given in the Appendix. Forest inventory data col-
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lected in the tower footprint were used to set initial condi-
tions for the models (Table A1). We calibrate the models us-
ing data from 2005 and 2006. Both models provide outputs at
the same half-hourly time steps as the assimilated flux data.
SIPNET is a fast model (∼ 5.5 s per execution, in this study),
which makes it suitable for application of traditional brute-
force MCMC methods. In contrast, it takes approximately
6.5 h for ED2 to complete a single run for this 2-year period,
which precludes its brute-force calibration.

We targeted both the plant physiological and soil biogeo-
chemistry parameters of the models. Unlike SIPNET, it is
possible to run ED2 simulations with more than one compet-
ing plant functional type (PFT). To reduce the dimensionality
of the calibration for ED2, differences among PFTs were as-
sumed to vary proportionally to the differences among their
priors and a parameter scaling correction factor (SF) was tar-
geted by the parameter data assimilation algorithm instead
of targeting each parameter per PFT. The SF operates on the
prior cumulative density function (CDF) probability space
[0,1]. For instance, when the SF for a certain parameter is
0.3, it would correspond to the 30th percentile of the param-
eter prior for each PFT.

We generated the priors and estimates for model param-
eters based on a hierarchical Bayesian trait meta-analysis
using PEcAn’s workflow. Meta-analysis priors were speci-
fied by fitting distributions to raw data collected from lit-
erature searches, unpublished datasets, or expert knowledge
(LeBauer et al., 2013). Direct mapping of previous informa-
tion to model parameters allows us to account for the uncer-
tainties in measurements derived from the collective weight
of a large range of studies rather than arbitrarily choosing
values from any one study (LeBauer et al., 2017). The use of
literature constraints ensures that the posterior parameter es-
timates fall within a biologically plausible range and reduces
the problem of equifinality, as parameters that are already
well constrained cannot vary much, and thus cannot trade off
with poorly constrained parameters. The parametric prior and
posterior distributions of the targeted parameters are given in
Tables A2 and A5–A6 for SIPNET and ED2, respectively.
The scaling factors used for common ED2 PFT parameters
all have Beta(1,1) prior distributions.

2.4 Emulator experiments

To test and validate the emulator approach we conducted the
following experiments: (1) a test against synthetic data us-
ing the emulator with SIPNET, (2) a comparison of emulator
and brute-force performances against real-world data using
SIPNET, (3) a calibration of ED2 with the emulator using
real-world data, and (4) a scaling test with the emulator to
evaluate how the actual clock time varies as a number of de-
sign points (full model runs) using SIPNET.

Before these experiments, we conducted a predictive un-
certainty analysis (for more details on the uncertainty analy-
sis workflow in PEcAn please see LeBauer et al., 2013; Di-

etze et al., 2014) to choose the model parameters for calibra-
tion. The parameters that can be constrained by data are those
that contribute to the model predictive uncertainty for that
corresponding variable. Figure 2 shows the plant physiology
and soil biogeochemistry parameters of the models that are
targeted by the calibration according to this uncertainty anal-
ysis. We chose a cutoff value of 5 % for SIPNET, meaning
we only targeted parameters that contribute more than 5 % of
the model predictive uncertainty for each variable of interest.
In order to facilitate comparisons among the contributions
of parameters to predictive uncertainty of output variables
with different units, partial variances were used. Partial vari-
ances are the variances of each parameter divided by the sum
of variances across all parameters per output variable. For
ED2, we lowered this threshold to 1 % because there is more
than one PFT that shares the uncertainty. In the end, 9 and
10 parameters were targeted in SIPNET and ED2, respec-
tively. To be more specific, the eight (nine) parameters for
SIPNET (ED2) that are shown in Fig. 2, plus the multiplica-
tive bias parameter, were targeted in the PDA. Therefore, in
total 93 (103) knots were proposed in three iterative emula-
tor rounds (also see Table 1 caption). For ED2, six out of the
nine model parameters were plant physiological parameters
that are common to all its PFTs, for which we used the scal-
ing factors (Fig. A5).

We first tested the emulator performance on retrieving true
values using a synthetic dataset. We generated a random pa-
rameter set for the SIPNET parameters shown in Fig. 2 and
ran the model forward with these values (Table A3). In order
to give the synthetic data real characteristics, model outputs
were reformatted to have the same gaps, time steps, and sam-
ple sizes as the data used in this study. Then, the likelihood
parameters were calculated from the synthetic dataset, and
next, further noise was added by drawing values from their
respective likelihood functions to obtain the final synthetic
dataset. In addition, the SoilResp data were multiplied by a
constant (k = 1.5) to mimic the real world situation. Then,
treating the model outputs as a synthetic dataset, we tested
whether emulator method posteriors converge on the true val-
ues. As this dataset was generated by the model itself, this
approach allows us to assume that we have the perfect model
(Trudinger et al., 2007; Fox et al., 2009). We compared the
emulator run in three rounds to an emulator fit to the same
number of knots in a single run to test whether increasing the
number of knots iteratively is more effective than proposing
the same number of knots in the beginning all at once.

We then tested the emulator with real-world data. As true
parameter values are unknown, we assessed the emulator
performance by comparing it to the brute-force MCMC. In
the brute-force MCMC, the full model is run at every iter-
ation, whereas in the emulator, the posteriors are approxi-
mated. Therefore, this experiment evaluates the influence of
the numerical approximation error introduced by the emula-
tor. As the larger computation time for ED2 does not per-
mit the use of brute force, we only compared the pre- and
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Figure 2. Results of uncertainty analysis in PEcAn for plant physiological and soil biogeochemistry parameters of SIPNET (a) and ED2 (b).
The longer the bar the more that parameter contributes to the model predictive uncertainty. The parameters shown above that contribute more
than 5 % (1 %) of uncertainty were chosen to target in calibration of SIPNET (ED2) and are shown above.

post-calibration performance of ED2. The before- and after-
calibration performances of both models were determined
by comparing a 500-run model ensemble to data. Ensem-
ble runs are forward model runs, with parameter values ran-
domly sampled from their distributions (which is the prior
distribution for the pre-PDA comparison and the posterior
distribution for the post-PDA).

In our scaling experiment, we evaluate the trade-off be-
tween the number of model runs and the approximation er-
ror by comparing the eight-parameter SIPNET brute-force
calibration to emulator calibrations with varying numbers of
k knots (k = {120,240,480,960}). To do this, we compared
the post-emulator PDA ensemble confidence interval errors
relative (RCI) to the post-brute-force PDA ensemble confi-
dence interval (CI) in terms of mean Euclidean distance be-
tween their 2.5 % and 97.5 % CIs. For each experiment with
k different knots and variable (CIE,L,k −CIB,L,k)

2, values
were calculated where “E” stands for emulator, “B” stands
for brute-force ensemble, and “L” stands for the lower CI
limit. The same is calculated for the upper CI limit (“U”) and
the sum of their mean is used as a score for relative confi-
dence interval (RCI) coverage per variable:

RCIVAR,k =mean((CIE,L,k −CIB,L,k)
2)

+mean((CIE,U,k −CIB,U,k)
2). (5)

Next, each RCI vector (RCIVAR = {RCIVAR,960, RCIVAR,480,
RCIVAR,240, RCIVAR,120}) is normalized by dividing by its
mean to obtain values independent of the units. Then, the
sum over the variables (in our case, RCIFINAL = RCINEE+

RCILE+RCISoilResp) given is the final RCI score.
In an additional scaling experiment, we evaluated the ca-

pacity to calibrate the model with emulator vs. actual clock
time. For this experiment, we chose m parameters (m=

{4,6,8,10}) of SIPNET considering the order of their con-
tribution to the overall model predictive uncertainty (Fig. 2,
Table A8). For each calibration, we again built an emulator
with k knots. After calibration, we used overall deviance of
the 500-run ensemble mean as a metric to evaluate calibrated
model performances.

3 Results

3.1 Test against synthetic data

The test against synthetic data showed that the emulator was
able to successfully retrieve the true parameter values that
were used in creating the synthetic dataset (Fig. 3). Diag-
nostics showed that the chains mixed well and converged
(all visual and Gelman–Rubin MCMC diagnostics can be ac-
cessed via the links provided in the workflow ID Table A7).
As expected, after each round of emulation, posteriors were
resolved more finely around the true values. Especially the
multiplicative bias parameter was only able to resolve in the
last round (R3). The posteriors of our “all-at-once” test, in
which we ran a single emulator proposing all 729 knots at
once, compared less well to the true values than the itera-
tive approach. This shows that adaptive refinement of the pa-
rameter space exploration is more effective than screening
the parameter space with the same (cumulative) number of
knots.

3.2 Brute-force vs. emulator

Even with the fast SIPNET model, the gain in wall-clock
time with the emulator was substantial. The three emulator
rounds cumulatively took ∼ 6 h (≈ 21765 s, Table 1) while
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Figure 3. Emulator performance against synthetic data. The red vertical line represents the true parameter values that were used to create the
synthetic dataset. Shaded distributions are the posteriors obtained after each emulator round. Dashed lines are the posteriors after a single
emulator (all at once, AAO) round built with a total number of knots of all rounds (729 knots) instead of refining the emulator iteratively
(first round 243, second round 486, third round 729). All priors were uniform for these parameters, except the multiplicative bias parameter.

Table 1. Time elapsed (in seconds) for each step of the emulator calibrations. “Model run time” refers to the computation time for running
the LHC model ensemble needed to construct the emulator. Sub-columns refer to the rounds of the emulator (first: 243, second: 486, third:
729= 93 knots cumulatively for SIPNET; first: 334, second: 667, third: 1000= 103 knots cumulatively for ED2).

Model run time GP model fitting 100 K MCMC

First Second Third First Second Third First Second Third Total

SIPNET 1278 1335 1307 105 843 4940 2265 3898 5794 21 765
ED2 26 018 22 380 22 927 249 2171 7838 2207 4996 7773 96 559

the brute-force approach took 112 h. Both metrics (RMSE
and deviance) were improved for NEE and LE after calibra-
tion with both methods (Table 2). RMSE for SoilResp got
worse after calibration with both methods; however this was
expected as we informed the model for the shape of the Soil-
Resp flux instead of the absolute magnitude. Indeed, both the
deviance metric (which includes the multiplicative bias pa-

rameter) and the soil respiration–temperature curve (Fig. 4,
bottom panel) improved after calibration with the emulator.
However, neither the deviance nor the curve improved af-
ter calibration with the brute-force approach. Overall, the
post-PDA ensemble spread was reduced with both methods,
while it was narrower after brute-force-PDA (Figs. 4, A2).
This was expected because the emulator includes additional

www.biogeosciences.net/15/5801/2018/ Biogeosciences, 15, 5801–5830, 2018



5810 I. Fer et al.: Linking big models to big data

Figure 4. SIPNET performance against real data (black dots) after emulator (orange polygon) vs. brute-force (blue) calibration. The pre-
PDA ensemble spread (green) was wider for all variables and was reduced with both methods. Panels (a) and (b) are monthly smoothed
time series (for the unsmoothed version please see Fig. A1), while (c) shows the temperature–soil respiration response curve, plotted with a
locally weighted scatter plot smoothing (LOESS) line and residuals from a fitted temperature response function as a conservative estimate of
the error bars. All polygons show the 2.5 %–97.5 % CI.

numerical approximation uncertainty in parameter estimates,
which propagates into wider confidence intervals in predic-
tions. This can also be seen in the posterior distributions in
which brute-force has tighter posterior distributions than the
emulator (Fig. 5). The strongest correlations between leaf
growth and leaf turnover rate, leaf growth and half saturation
PAR, soil respiration rate and soil respiration Q10 were also
detectable in emulator posteriors (emulator Fig. A3, brute-
force Fig. A4).

The effective information content of each data type in the
calibration was balanced with autocorrelation correction and
effective sample size calculation. The weights of each data
after correction can be seen from the deviance values (Ta-
ble 2). LE and NEE still contribute more to the overall cal-
ibration than SoilResp. After autocorrelation correction, the
effective sample sizes for these two datasets were approxi-
mately 280 and 51. For comparison, with uncorrected sample
sizes of 7945 and 9426, the deviance values would have been
85 357 and −278065 for pre-PDA SIPNET LE and NEE.
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Figure 5. Posteriors from the emulator vs. brute-force approaches with SIPNET after calibration against real-world data.

Table 2. Performance statistics of ensemble means before and after the PDA for both models and output variables. While root-mean-square-
error (RMSE) scores evaluate the deviations of model predictions from data, deviance (−2× log-likelihood) scores evaluate the goodness of
fit under the assumed data model. For both metrics lower scores are better.

NEE LE SoilResp

pre-PDA post-PDA pre-PDA post-PDA pre-PDA post-PDA

RMSE
SIPNETE 140 43 89 79 18 26
SIPNETB 43 77 32
ED2 122 68 124 89 29 18

Deviance
SIPNETE 2745 976 9879 8424 −1333 −1353
SIPNETB 944 8331 −1315
ED2 3152 1523 9914 9103 −1380 −1390

SIPNETE: emulator PDA. SIPNETB: brute-force PDA. RMSE values for LE are in W m−2. RMSE values for NEE and SoilResp are in
kg C m−2 s−1 and (bold values) were rescaled by 109 for easier comparison. Deviance values are in log-likelihood units.
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Figure 6. Pre-PDA vs. post-PDA ED2 performance against real-world data. Panels and colors are the same as in Fig. 4.

3.3 ED2 calibration

The emulator calibration for ED2 took ∼ 27 h (≈ 96559 s,
Table 1). In contrast, a 100 K iteration of Metropolis–
Hastings MCMC with ED2 would have taken approximately
74 years. Both metrics for all variables showed improvement
post-PDA (Table 2) and their ensemble spread became nar-
rower (Fig. 6). Fitted parametric posterior distributions of
ED2 are given in the Appendix (Fig. A5, Table A6). In ad-
dition, all raw MCMC samples and posterior density distri-
bution plots are available in the respective workflow direc-
tories (see Table A7). While all the chains are mixed and

converged, the growth respiration factor and fine root alloca-
tion scaling factors were less well resolved, indicating that a
fourth round might improve their calibration; however, these
model outputs were not too sensitive to these parameters
(Fig. 2).

Post-PDA ensemble mean of ED2 shows a worse agree-
ment with the NEE and LE data than SIPNET and a better
agreement with SoilResp (Table 2). However, the time se-
ries plot of the LE for SIPNET (Fig. 4b) shows that SIPNET
largely overestimates the winter moisture fluxes whereas
ED2 does not (Fig. 6b). SIPNET still has an early onset of
C fluxes post-PDA whereas ED2 is late to turn off carbon
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fluxes (top panels of Figs. 4 and 6). Both pre- and post-PDA
ED2 performance for SoilResp was better than SIPNET (bot-
tom panels of Figs. 4 and 6). ED2 also captures the summer
diurnal cycle better than SIPNET and both models were im-
proved after emulator PDA (Fig. A6).

3.4 Emulator scaling

Figure 7 shows how the emulator method scales with more
knots using the mlegp R package and the trade-off between
wall-clock time vs. the approximation error. As expected, the
post-PDA ensemble CI approaches the brute-force post-PDA
CI. In other words, the RCI asymptotically converges to zero,
while the clock time tends to increase with the number of
knots (Fig. 7a).

The trade-off between improved model–data agreement
(lower deviance values) vs. wall-clock time suggests the
more we explore the parameter space (more knots), the lower
the deviance becomes in general (Fig. 7b). Deviance also
lowers with number of parameters targeted in general. How-
ever, the best fit was not always to the model with the most
parameters, and the number of parameters of the best fit var-
ied with the number of knots. With a lower number of knots,
fewer parameters were well constrained, but with too few pa-
rameters we traded off the ability to obtain a good fit. The
clock time is largely determined by the number of knots, with
much lower sensitivity to the number of parameters as num-
ber of knots was much greater than (�) the number of pa-
rameters in this study.

4 Discussion

4.1 Adaptive sampling design

Our experiment against synthetic data showed that the GP
model emulator method was able to recapture the true values
successfully. While the posteriors of the emulators with few
knots (initial round) could be wide, additional rounds of em-
ulator refinement were able to constrain the posteriors better.
Our test in which we proposed the cumulative number of de-
sign points all at once showed that, even though we proposed
the same number of knots in the end, where you propose
those points in the parameter space is important, and itera-
tively refining the search is a more efficient way of exploring
the parameter space. This is because the initial proposal of
parameters with LHC had no way of knowing which parts of
parameter space are most important to explore, and thus the
tails of the distributions end up oversampled and the core un-
dersampled. Furthermore, without multiple iterations the co-
variances among parameters are also underconstrained, un-
less informative prior distributions are chosen or previously
known covariances are provided. Sampling new knots from
the posteriors of the previous iteration informs the algorithm
about the posterior means and covariances and allows the
GP to be refined adaptively. The efficiency of this workflow

could potentially be increased further by other adaptive sam-
pling designs, and this remains an important area for further
research. For example, Oakley and Youngman (2017) used
an initial set of simulator runs to screen out low-likelihood
regions to reduce the parameter space before the calibration.
For a review of adaptive sampling methods, and emulator
design methodologies in general, see Forrester and Keane
(2009).

4.2 Emulator construction

In this study, we focused on calibrating process-based mech-
anistic simulators (ecosystem models) using computation-
ally cheaper emulators. Variations in emulator approach are
many and can be found in Jandarov et al. (2014), Aslanyan
et al. (2015), Huang et al. (2016), Oakley and Youngman
(2017), and the references therein. Here we adopted the ver-
sion that emulates the likelihood surface with a GP, similar
to previous studies including applications with a cosmolog-
ical likelihood function (Aslanyan et al., 2015), a stochas-
tic natural history model (Oakley and Youngman, 2017), the
Hartmann function and a hydrologic model (Wang et al.,
2014), and two land surface models (Li et al., 2018). Our
scheme resembles the adaptive surrogate modeling-based op-
timization (ASMO) approach (Wang et al., 2014; Li et al.,
2018) in terms of both the nature of the problem (calibration
of a process-based mechanistic simulator) and the general
scheme of the calibration algorithm. However, aside from
differences in initial sampling designs and error character-
izations in these studies, there are two main differences of
our scheme from ASMO.

First, we run full MCMC in between the adaptive sampling
steps, and on the final response surface, instead of optimiza-
tion search. Hence, we were able to provide full posterior
probability density distribution of the parameters targeted for
calibration instead of point estimates of optimum values as in
Li et al. (2018). The ASMO scheme has also been recently
updated for distribution estimation using full MCMC runs
(ASMO-PODE) and has been tested with the Common Land
Model (Gong and Duan, 2017). An important update in our
study was that we used the error estimation (variance) pro-
vided by the GP model instead of only using the mean es-
timates as Gong and Duan (2017) did, which allowed us to
fully propagate the uncertainties to the post-PDA model pre-
dictions. Earlier work (not shown) illustrated that failing to
propagate the emulator uncertainty (step 5b) results in over-
confident posteriors that can easily miss the true parameter
in simulated data experiments.

A second addition to our scheme was that we included a
further generalization of emulation of the sufficient statis-
tics (T ) surface. T is, by definition, sufficient to estimate the
simulator (process model) parameters in the MCMC. Unlike
emulating the likelihood (this study, Oakley and Youngman
(2017); Kandasamy et al. (2015)) or the posteriors (Gong and
Duan, 2017), emulating T allows us to estimate parameters
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Figure 7. Results of the scaling experiment. (a) Trade-off between wall-clock time and the approximation error (relative confidence interval,
RCI) with increasing emulator knots. (b) The trade-off between improved model–data agreement and wall-clock time. The red star is the
emulator design followed in this study for SIPNET with eight model parameters and 729 knots. Underlying data for (b) can be found in
Table A9.

that are not part of the process model but are part of the sta-
tistical data model (the likelihood) as well. In this study, we
tested the sufficient statistics emulation for the SoilResp data
and updated Gaussian likelihood precision parameter in the
MCMC together with other process model parameters. This
residual parameter includes both data error and model struc-
tural error, and it is not possible to distinguish one from the
other with this approach (van Oijen, 2017). However, when
we apply the same calibration scheme to different process
models at the same site, because the observation error in
the data is the same, the difference in the posteriors of this
residual parameter (Fig. A7) could give us clues about the
model structural errors of models relative to each other, as
we demonstrate in this study as a proof of concept. However,
in our study, use of multiplicative bias parameter further ob-
scures the difference between observation and model struc-
tural error.

Indeed, implementation of a more formal way of account-
ing for model structural error (also called the discrepancy be-
tween model output and reality) in our emulator scheme is
one of our planned next steps. Explicitly specifying a model
discrepancy term and estimating it through MCMC would
allow us to account for all sources of model predictive uncer-
tainty (van Oijen, 2017). However, determining the expected
form of discrepancy in order to learn about model param-
eters realistically could be difficult due to lack of mecha-
nistic knowledge of the underlying processes (Brynjarsdót-
tir and O’Hagan, 2014). In that sense, accounting for dis-
crepancy in model calibration is not an issue specific to em-
ulator approach. For a novel approach investigating model

structural uncertainty through a modular modeling frame-
work, see Walker et al. (2018), which could be useful for
modeling prior knowledge about discrepancy in ecosystem
models in the future. Because of the unknowns about the
discrepancy functions, it is common to use GPs to model
the discrepancy (Kennedy and O’Hagan, 2001). Even then,
only with realistic prior constraints about the process, would
calibrated model predictions be unbiased (Brynjarsdóttir and
O’Hagan, 2014). For an example of addressing discrepancy
in calibration that combines the likelihood-emulation ap-
proach with importance sampling, see Oakley and Young-
man (2017), who inflated simulator uncertainty to account
for simulator discrepancy instead of explicitly specifying a
prior for it in order to make the likelihood tractable. When
likelihood function becomes intractable or a sufficient statis-
tic does not exist, techniques using likelihood-free inference
(Gutmann and Corander, 2016) or computing approximately
sufficient statistics could also be a remedy (Joyce and Mar-
joram, 2008).

Finally, the scheme used in this study is also compatible
with various adaptive sampling designs (other than LHC),
emulator models (other than GP), and MCMC algorithms
(other than adaptive Metropolis–Hastings) like the ASMO-
PODE scheme (Gong and Duan, 2017).

4.3 Brute force vs. emulator

Both brute-force and emulator methods reduced the uncer-
tainty around the model predictions when real data were as-
similated with SIPNET. Brute-force posteriors resolved more
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finely than the emulator as expected due to the numerical
approximation error in the emulator. Therefore, when com-
putational time allows, brute-force methods will result in
more precise posteriors and are preferred over the emulator
method. However, when the model run time or the volume of
data to be assimilated does not allow running long MCMC
iterations, it is possible to constrain parameters in orders of
magnitude less time, with far fewer model evaluations, and
with much greater parallelization using the emulator method.
This speedup puts model calibration within reach for large,
computationally challenging models that are currently under-
constrained.

In addition to just fitting the model, emulators make it
practical to implement different hypotheses within a model,
recalibrate the model, and test them against data repeatedly.
Furthermore, emulators make it possible to calibrate com-
plex models hierarchically, which would not be computation-
ally feasible otherwise as hierarchical Bayesian modeling in-
volves calibrating models many times at multiple spatial–
temporal–experimental settings. For example, it is a known
issue that site-level calibrations are not easily transferable to
new sites or to larger scales (Post et al., 2017). In that sense,
hierarchical Bayesian approach is an important improvement
over classical Bayesian model calibrations because it for-
mally accounts for the spatial and temporal variability in
ecosystems and provides a structure that will help us bet-
ter understand the uncertainties involved at different levels
of our study systems (Clark, 2005; Thomas et al., 2017).

4.4 Autocorrelation correction and multiple data
constraints

A lack of independence in observation errors causes over-
fitting of the model parameters and underestimation of pre-
diction uncertainties (Ricciuto et al., 2008). It is not uncom-
mon for calibration against one dataset that is given a high
weight (e.g., many more observations) to cause other model
outputs to perform worse. Indeed, in our calibration study,
model–data agreement for NEE improved, while it was re-
duced for the SoilResp variable after the brute-force cali-
bration. The most common approaches to this problem in-
volve arbitrary weights or ad hoc solutions to rebalance the
influence of data. We addressed this issue with a novel ap-
proach of explicitly modeling autocorrelation, which pro-
vides a more objective and statistically rigorous approach to
balancing the weights of different data. Although the NEE
and LE data still influenced the calibration more than the
SoilResp data, assimilating multiple data streams and bal-
ancing their influence was important. For example, NEE is a
result of both primary production and respiration processes,
and the model outputs were sensitive to parameters involved
in both of these processes. If we were to assimilate only NEE,
estimated parameters contributing to NEE might have com-
pensating errors (Post et al., 2017). However, including an
additional constraint on model parameters contributing to ei-

ther primary production or respiration could help us distin-
guish such compensation effects. Altogether, overfitting of
models is a common problem in Bayesian calibration, and
both the autocorrelation correction and the use of the emula-
tor method practically proved to be helpful strategies. Lastly,
the effect of number of assimilated data streams on emulator
performance is not explicitly tested in this study; however,
calibration performance of the emulator should still be pro-
portional to brute force with more or fewer data streams. For
studies that inspect the effect of assimilating multiple data
streams on model calibration performance, see Keenan et al.
(2013) and MacBean et al. (2017).

4.5 Scaling factors

In the calibration of ED2, instead of constraining the PFT
parameters directly, we targeted scaling factors (SFs) for
parameters that are common among PFTs, which reduces
the dimensionality considerably (i.e., instead of targeting
Nparameters×MPFTs, we only target Nparameters). This experi-
ment showed that the emulator method with SFs could con-
strain ED2 PFT parameters and improve model predictions.
However, this approach assumes that the relative differences
among PFTs are approximately correct, but that overall pro-
cesses may be miscalibrated, and thus that the more likely pa-
rameter space for different PFTs will be in similar regions of
their prior distributions. For example, if a density-dependent
mortality parameter is being targeted, the prior distributions
for an early and a late successional type can be defined to rep-
resent their differentiation so that the posteriors would still
be different when using the SF. In our study, PDA priors for
each PFT were informed by meta-analysis, therefore accom-
modating for such differences amongst PFTs. By contrast,
the SF approach by itself cannot, for example, converge on
values in the first quartile for a certain parameter space for
one PFT and in the third quartile for another PFT. We note
that the SF approach is not specific to the emulator method
and could also be used with brute-force algorithms to reduce
dimensionality.

4.6 Approximation error vs. clock time

The emulator method we propose overcomes many hurdles
in the Bayesian calibration of ecosystem models, especially
in terms of computation time. The main cost of running the
full model sequentially for the MCMC is avoided in the em-
ulator approach, and the initial set of runs (or the iterative
batches of runs) can be parallelized. Algorithms like sequen-
tial Monte Carlo (or particle filter) provide a partial solu-
tion since they allow parallelization, but they often require
an even larger number of model evaluations than a typical
MCMC, particularly for higher-dimensional problems (Aru-
lampalam et al., 2002). Nevertheless, dimensionality can still
be a problem for the emulator method as more knots will be
needed to resolve the predicted surface as the number of pa-
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rameters to be constrained increases. Our scaling experiment
indicates that RCI decays quickly and starts leveling off as
the number of knots increases. In other words, one can stop
increasing the number of knots at a stage at which the gain in
terms of approximation error reduction being heavily traded
off with clock time is reached. Detecting such thresholds is
feasible in practice if the emulator is refined iteratively.

A similar threshold was also apparent for overall model
calibration ability. While the gain, if any, in model im-
provement in terms of deviance was minimal from 480 to
960 knots, the clock time required was more than doubled in
our scaling experiment. This experiment also suggested that
the number of model parameters we chose to constrain was
an adequate choice for our setting. Targeting a few additional
model parameters did not result in substantial differences in
terms of overall deviance, which was expected as the targeted
parameters were chosen according to their contribution to the
overall model uncertainty. Thus we are confronted with the
fundamental trade-off in which increasing the number of pa-
rameters requires proposing more knots to explore the pa-
rameter space, which increases run time, and at some point
these additional parameters provide diminishing returns. Un-
derstanding this trade-off is greatly facilitated by performing
an uncertainty analysis before calibration, which allows pa-
rameters to be added to the calibration in order of their con-
tribution to model uncertainty. Finally, we note that the shape
of the clock time vs. deviance trade-off curves will vary by
model as they varied by number of model parameters.

To fit the GP models in this study, we used the mlegp R
package, which was found to be performing well with its de-
fault settings (Erickson et al., 2018). The comparison by Er-
ickson et al. (2018) shows that there are faster (such as laGP)
and computationally more stable (such as GPfit) R packages
available. However, laGP performs worse than mlegp unless
thousands of design points are provided, and GPfit is substan-
tially slower than mlegp as it is solely written in R whereas
mlegp is pre-compiled in C. Finally, other packages from
other platforms (such as the GPy and scikit-learn modules
of Python) could outperform mlegp (Erickson et al., 2018);
however, as PEcAn is mainly written in R, mlegp was an ad-
equate choice for our workflow. Overall, the approximation
error vs. clock-time trade-off is not independent of the soft-
ware/code used to fit the GP model.

In this study, we tested emulator calibration with num-
ber of parameters that are comparable to, if not higher than,
previous studies with biosphere models (Ray et al., 2015;
Huang et al., 2016; Gong and Duan, 2017). However, run-
ning the emulator can also become infeasible. For example,
with the current scheme calibrating 100 parameters would
not be possible with 1003 knots, as O(N3) floating point op-
erations needed for the Cholesky decomposition in GP would
exceed memory and wall-clock time capacities. That said,
the p3 scheme is just the rule of thumb that we employed
in these experiments and not an inherent limit of the emula-
tor approach itself. The calibration of 100 parameters might

be possible with a much smaller number of knots (� 106)
depending on the model. Using a sample size of about 10
times (n= 10 d) the input dimension is a common recom-
mendation in computer experiments with GP (Loeppky et al.,
2009). But this is considered to be too small for most of the
cases and using 20 times (n= 20 d) larger sample sizes is
suggested instead (Erickson et al., 2018). Indeed, our scaling
experiment also suggests calibrating the model with fewer
knots (< p3) would be possible. In practice, we would ad-
vocate for performing an uncertainty analysis to reduce the
dimensionality of the problem. In addition, the data would
need to be strong enough to actually constrain such a large
number of parameters. Still, when dimensionality becomes
too large, alternative emulators could be explored, such as
the nearest-neighbor GP model (which takes advantage of the
fact that the nearest neighbors contribute the most informa-
tion while fitting the GP model and could help reduce com-
putational costs substantially for bigger datasets and a much
larger number of parameters; Datta et al., 2016).

5 Conclusions

Here we introduced a framework that addresses both the
computational and statistical challenges of Bayesian model
calibration. We introduced a number of novel approaches,
such as building an emulator on the sufficient statistics sur-
face, implementing an autocorrelation correction on the la-
tent time series estimated through a state-space model, and
introducing a scaling factor to reduce dimensionality across
PFTs. We also standardized and generalized this framework
in an open source ecological informatics toolbox, PEcAn, for
repeatability and use with other ecosystem models.

Our study furthers efforts toward reducing model uncer-
tainties showing that the emulator method makes it possi-
ble to efficiently calibrate complex models. Here we demon-
strated examples and evaluated performances with terrestrial
ecosystem models but the application can be generalized
to any “big model”. Overall, this efficient data assimilation
method allows us to conduct more calibration experiments in
relatively shorter times, enabling the constraint of numerous
models using the expanding number and types of data.

Code availability. All the code used in this study can be found at
http://github.com/PecanProject/, last access: 30 September 2018.
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Appendix A

A1 Study site

Bartlett Experimental Forest (44◦17′ N, 71◦03′W) is a US
Forest Service research forest located outside of Bartlett, NH,
in the White Mountains (Lee et al., 2018). Species compo-
sition is typical of northern hardwood forests and consists
predominantly of Acer rubrum (red maple), Fagus grandifo-
lia (American beech), Betula papyrifera (paper birch), and
Tsuga canadensis (eastern hemlock). Climate is also typi-
cal of central New England with short summers (20 ◦C) and
long cold winters (−8 ◦C). The site is generally moist, re-
ceiving approximately 1300 mmyr−1 of precipitation. Soils
are sandy loam Spodosols and can become saturated during
spring snowmelt.

An eddy-covariance tower (26.5 m) was installed in
November 2003 at a lowland site (272 m) within the experi-
mental forest. Topography near the eddy-covariance tower is
flat to gently sloping but larger hills (1–3 km distant) sur-
round the site. Canopy height is 19 m with a mean stand
age of approximately 100 years. The eddy-covariance sys-
tem consists of a LI-6262 CO2/H2O infrared gas analyzer
(LI-COR, Lincoln, NE) and SAT-211/3 K three-axis sonic
anemometer (Applied Technologies, Longmont, Colorado).
Measurements were made at 5 Hz and fluxes were estimated
every 30 min. The meteorological data used in this anal-
ysis were derived from measurements made at the eddy-
covariance tower for the years 2005–2006. These include air
temperature above the canopy (22.3 m), soil temperature, rel-
ative humidity, precipitation, above-canopy PAR, and wind
speed.

The Bartlett tower footprint contains 12 vegetation inven-
tory plots that follow the Forest Inventory and Analysis (FIA)
design consisting of four circular 10 m radius subplots: one
central and three evenly spaced at a radius of 36.5 m. Vegeta-
tion plots were established in May 2004 and used to initial-
ize ED2. Bradford et al. (2010) provided soil carbon and live
aboveground biomass estimates for Bartlett, which we used
to initialize SIPNET.

Soil respiration measurements were made manually in
each plot (n= 12) at permanently installed rings that are
10 cm in diameter using a soil CO2 flux chamber (LI-COR
6400-9). Soil temperature and moisture were measured con-
currently using a soil temperature probe and a TDR probe.
During 2006, soil respiration censuses were made approxi-
mately every 4–5 days from day 138 to day 325 for a total of
39 chamber censuses.

A2 SIPNET model

The Simplified Photosynthesis and Evapotranspiration
model (SIPNET) is a simple ecosystem model that can be
used to interpret carbon water exchange between vegetation
and the atmosphere. SIPNET has been developed from the

PnET family of models to facilitate model comparisons to
flux towers (Braswell et al., 2005; Sacks et al., 2006). SIP-
NET runs at a half-hourly time step. It represents relatively
few processes (has two vegetation carbon pools, a single ag-
gregated soil carbon pool, and a simple soil moisture sub-
model), making it easier to evaluate which data contribute
how much to the parameterization of each process. As a re-
sult of this setup, SIPNET is a fast model (∼ 5.5 s per MCMC
iteration in PEcAn including model execution and writing
and reading model outputs), which makes it suitable for ap-
plication of brute-force methods.

Forest inventory data collected in the tower footprint
were used to set initial conditions in SIPNET. We fitted
Bayesian models using the allometric equations available in
the literature (Jenkins et al., 2004) to estimate the above-
ground biomass at Bartlett through PEcAn’s allometry mod-
ule. These values were in agreement with live aboveground
biomass estimates by Bradford et al. (2010) whose soil car-
bon pool estimates were also used to set the initial values in
our SIPNET runs (Table A1).

A3 Ecosystem Demography Model

The Ecosystem Demography Model version 2.1 (ED2) is a
terrestrial biosphere model that couples plant community dy-
namics to biogeochemical models of associated soil fluxes
of carbon, water, and nitrogen (Moorcroft et al., 2001; Med-
vigy et al., 2009). ED2 is explicitly designed to scale from
the individual to the region and to account for community
processes, such as disturbance and resource competition, in
a manner analogous to forest gap models. ED2 achieves this
with a size and age structured (SAS) approximation to a for-
est gap model, which accounts for the vertical size distri-
bution within a stand/patch and the distribution of different
stand ages across the landscape. This hierarchical SAS al-
lows ED2 to be compared to data operating at multiple scales
but in practice this means that a single ED2 run will simulate
a large number of different patches, each with a number of
trees of different sizes and species. The resulting computa-
tional expenses and complexity of drivers and outputs make
ED2 an ideal example of the challenges of model–data fu-
sion. The initialization of vegetation and soil for ED2 was
carried out using the same forest inventory data and soil car-
bon measurements described for SIPNET. The species occur-
ring in the inventory data were mapped to ED2 PFTs follow-
ing Dietze and Moorcroft (2011).
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Figure A1. Unsmoothed, half-hourly time series comparison for NEE and LE predictions, before and after calibration.

Table A1. Initial state values used for SIPNET runs.

Pool Value Units

Above- and belowground woody biomass 9600 gCm−2 ground area
Initial leaf area 0 m2 leaves m−2 ground area
Litter biomass 200 gCm−2 ground area
Soil biomass 1600 gCm−2 ground area

Biogeosciences, 15, 5801–5830, 2018 www.biogeosciences.net/15/5801/2018/
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Table A2. The prior and posterior distributions of the constrained SIPNET parameters.

Parameter Prior Posterior (emulator) Posterior (brute force)

SOM respiration rate unif(0.001, 0.3) weibull(1.62, 0.13) norm(0.1, 0.009)
Soil respiration Q10 unif(1.4, 3.0) lnorm(0.697, 0.24) lnorm(0.39, 0.046)
Soil WHC unif(0.1, 36.0) lnorm(2.95, 0.31) lnorm(2.7, 0.035)
Half saturation PAR unif(4.0, 27.0) weibull(3.74, 17.5) lnorm(2.8, 4.5× 10−2)
dVPDSlope unif(0.01, 0.25) weibull(2.26, 7e-02) norm(0.08, 2.6× 10−3)
Seasonal leaf growth unif(0.0, 252.0) norm(150.6, 46.8) norm(145, 10.8)
psnTOpt unif(5.0, 40.0) norm(12.07, 35.7) weibull(336, 39.9)
Leaf turnover rate unif(0.03, 6.0) norm(5.14, 1.9) lnorm(1.64, 5× 10−2)

Table A3. Calibrated SIPNET parameters and the “true” values used to produce the synthetic data.

Parameter Definition Units True values

SOM respiration rate Soil organic matter respiration rate co-
efficient

Day−1 0.01

Optimum photosynthesis rate Optimum temperature for photosynthe-
sis

Celcius 36.75

Soil respiration Q10 Scalar determining effect of tempera-
ture on soil heterotrophic respiration

ratio 2.75

Soil WHC Soil water holding capacity cm 25.75
Seasonal leaf growth Amount of leaf growth following leaf-

out
gCm−2 180

Leaf turnover rate Average turnover rate of leaves yr−1 3.2
Slope VPD Slope of VPD–photosynthesis relation-

ship
kPa−1 0.05

Half saturation PAR Photosynthetically active ratio at which
photosynthesis occurs at half the theo-
retical minimum

einsteins m−2 day−1 6.46

Multiplicative bias Soil respiration scaling constant unitless 1.5

Table A4. Calibrated ED2 parameters.

Parameter Definition Units

Stomatal slope Slope of relation between stomatal conductance and A ratio
Quantum efficiency Efficiency with which light is converted into fixed carbon fraction
Vcmax Maximum rubisco carboxylation capacity µmolCO2 m−2 s−1

Cuticular conductance Leaf (cuticular) conductance when stomata fully closed µmolH2Om−2 s−1

Growth respiration factor Proportion of daily carbon gain lost to growth respiration fraction
Fine root allocation Ratio of fine root to leaf biomass ratio
r_stsc Fraction of structural pool decomposition going to het-

erotrophic respiration
fraction

Decay rate stsc Intrinsic decay rate of structural pool soil carbon 1/day
Resp. temperature increase Determines how rapidly heterotrophic respiration increases

with increasing temperature
1/K

Multiplicative bias Soil respiration scaling constant unitless
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Table A5. The PDA prior (meta-analysis posterior) approximated parametric distributions of the targeted ED2 parameters.

Plant functional type physiological parameters

t.EH t.LC t.LH t.NMH t.NP

Stomatal slope gamma(19.7, 2.97) weibull(2, 10) weibull(2, 10) weibull(2, 10) weibull(2, 10)
Quantum efficiency gamma(16.6, 279) norm(0.08, 0.014) weibull(2.9, 0.07) lnorm(-3.28, 0.08) gamma(82, 1.4× 103)
Vcmax norm(74.9, 9.8) weibull(1.7, 80) norm(60.5, 11.9) gamma(37.8, 0.53) weibull(2.2, 80)
Cuticular conductance lnorm(9.4, 0.7) lnorm(9.4, 0.7) lnorm(9.4, 0.7) norm(9988, 497) lnorm(9.4, 0.7)
Growth respiration factor beta(4.06, 7.2) beta(2.63, 6.52) beta(4.06, 7.2) beta(2.63, 6.52) beta(2.63, 6.52)
Fine root allocation gamma(16.59, 23.32) lnorm(−0.25, 1) gamma(9.13, 8.22) gamma(9.44, 8.82) lnorm(−0.25, 1)

Soil biogeochemistry (decomposition) parameters

r_stsc beta(1, 1)
Decay rate stsc unif(0.005, 0.75)
Resp. temperature increase unif(0.05, 0.2)

t.EH: temperate early hardwood; t.LC: temperate late conifer; t.LH: temperate late hardwood; t.NMH: temperate north mid-hardwood; t.NP: temperate northern pine.

Table A6. The emulator PDA approximated parametric posterior distributions of the targeted ED2 parameters.

Plant functional type physiological parameters

t.EH t.LC t.LH t.NMH t.NP

stomatal slope lnorm(1.48, 0.13) gamma(4.01, 1.6) gamma(4.01, 1.6) gamma(4.01, 1.6) gamma(4.01, 1.6)
quantum efficiency lnorm(−2.8, 0.11) norm(0.08, 6.3× 10−3) gamma(35.8, 541) lnorm(−3.3, 0.04) lnorm(−2.8, 0.05)
Vcmax norm(47.3, 3.45) gamma(2.83, 1.04) norm(27.1, 4.17) norm(42.9, 2.85) weibull(2.4, 6.4)
cuticular conductance norm(9.85, 0.385) norm(9.85, 0.385) norm(9.85, 0.385) norm(10 308, 273) norm(9.85, 0.385)
growth respiration factor beta(3.59, 7.47) beta(2.29, 6.8) beta(3.59, 7.47) beta(2.29, 6.8) beta(2.29, 6.8)
fine root allocation gamma(30.7, 7.47) lnorm(−0.3, 0.73) gamma(16.7, 15.6) gamma(17.3, 16.8) lnorm(−0.3, 0.73)

Soil biogeochemistry (decomposition) parameters

r_stsc beta(1, 1.98)
decay rate stsc lnorm(−2.97, 1.02)
resp. temperature increase lnorm(−2.16, 0.28)

t.EH: temperate early hardwood; t.LC: temperate late conifer; t.LH: temperate late hardwood; t.NMH: temperate north mid-hardwood; t.NP: temperate northern pine.
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Figure A2. Predicted vs. observed comparison with concentration ellipses. (a) SIPNET; (b) ED2. Units are the same as in Fig. A1: NEE:
kg C m−2 day−1; LE: Wm−2.
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Figure A3. Correlations in the posterior samples after emulator MCMC (SIPNET). The lower left and upper right triangles show the corre-
lation density and the Pearson correlation coefficients between the parameters on the diagonal, respectively (Hartig et al., 2017).
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Figure A4. Correlations in the posterior samples after brute-force MCMC (SIPNET).
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Figure A5. ED2 decomposition and scaling factor posterior density distributions. Parameters common to all ED2 PFTs ending with the suffix
“SF” were targeted through the scaling factor.

Figure A6. Diurnal cycles of NEE and LE fluxes for June–July–August over the simulation period (2005–2006) before and after the calibra-
tion. Error bars represent the variation over the JJA period. Units are the same as above: NEE: kgCm−2 day−1 and LE: Wm−2.
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Table A7. Links to the workflow IDs. The input–output files as-
sociated with each workflow can be accessed via the history ta-
ble at the following link http://pecan2.bu.edu/pecan/history.php, last
access: 30 September 2018. Or each workflow can be accessed
directly by replacing the workflow ID at the end of the follow-
ing link: http://pecan2.bu.edu/pecan/08-finished.php?workflowid=
1000008379, last access: 30 September 2018. The left frame
on the page can be used to navigate through PEcAn settings
and input and output files. If you wish to conduct further vi-
sualizations or analysis on the MCMC samples, you can first
select the “mcmc.list.pda***.Rdata” file (*** being the ensem-
ble IDs given by the workflow) under the “PEcAn Files” drop-
down menu on the left frame. By clicking “Show File” button
you can download the raw MCMC outputs to your own ma-
chines. If you would like to display posterior density distributions,
first select either soil or plant physiology under the “PFTs/PFT”
menu on the left frame. Next, under the “PFTs/Output” drop-
down menu, select “posteriors.pda.***.pdf” and click “Show PFT
Output”. The red line would be the posterior density plot and
the black line would be the approximated parametric distribu-
tions (such as the ones reported in Tables A2 and A6) fitted
by PEcAn’s approx.posterior function that can be found under
pecan/modules/meta.analysis/R/approx.posterior.R.

Model Experiment Workflow ID

SIPNET Pre-PDA EA/UA 1000008379
SIPNET Emulator PDA – synthetic data 1000009295
SIPNET Emulator PDA – real data 1000009249
SIPNET Emulator post-PDA EA 1000009309
SIPNET Brute-force PDA – real data (chain 1) 1000008530
SIPNET Brute-force PDA – real data (chain 2) 1000008531
SIPNET Brute-force PDA – real data (chain 3) 1000008532
SIPNET Brute-force post-PDA EA 1000008923
ED2 Pre-PDA EA/UA 1000009051
ED2 Emulator PDA – real data 1000009052
ED2 Emulator post-PDA EA 1000009052

PDA: parameter data assimilation; EA: ensemble analysis; UA: uncertainty analysis.

Figure A7. Posterior probability density distribution of variance
(reciprocal of the precision, 1/τ ) parameter of the soil respiration
likelihood after emulator PDA.

Table A8. Links to the workflow IDs of scaling experi-
ments. Parameters targeted are in this order cumulatively:
som_respiration_rate, soil_respiration_Q10, soilWHC, psnTOpt
(4), leafGrowth, leaf_turnover_rate (6), half_saturation_PAR,
dVPDSlope (8), AmaxFrac, dVpdExp (10).

Model No. of parameters No. of knots Workflow ID

SIPNET 4

960 1000009310
480 1000009311
240 1000009312
120 1000009313

SIPNET 6

960 1000009314
480 1000009315
240 1000009316
120 1000009317

SIPNET 8

960 1000009318
480 1000009319
240 1000009320
120 1000009321

SIPNET 10

960 1000009322
480 1000009323
240 1000009324
120 1000009325
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Table A9. Scaling experiment results showing the trade-off between wall-clock time and the approximation error with increasing emulator
knots.

m n Model run time (s) GP fitting (s) 100 K MCMC (s) Deviance

First Second Third First Second Third First Second Third

4

120 182 188 184 2 4 12 772 948 1144 9489
240 366 364 359 5 27 92 941 1340 1764 9255
480 733 748 744 28 228 707 1592 2502 3614 9230
960 1453 1511 1505 204 1736 6615 2523 4862 7815 9308

6

120 182 180 185 2 6 14 795 1017 1221 8371
240 365 368 366 5 27 85 1039 1519 1962 8284
480 735 777 737 28 215 731 1544 2488 3675 8310
960 1521 1471 1514 209 1785 6858 2360 4503 7799 8150

8

120 197 199 198 2 5 12 905 1116 1323 9825
240 410 392 392 7 32 109 1152 1611 2107 8643
480 745 749 754 30 236 747 1625 2596 3766 8100
960 1517 1532 1502 217 1949 6678 2532 4827 7498 8062

10

120 187 187 187 2 7 15 988 1254 1277 9573
240 376 368 418 5 29 92 1235 1610 2075 8682
480 752 769 766 26 204 787 1681 2732 3489 8559
960 1491 1507 1490 208 2015 6643 2721 5010 7831 8106

m parameters (m= {4,6,8,10}); k knots (k = {120,240,480,960}).
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Figure A8. Schematic diagram of emulator workflow.
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