8,167 research outputs found
Long-wavelength limit of gyrokinetics in a turbulent tokamak and its intrinsic ambipolarity
Recently, the electrostatic gyrokinetic Hamiltonian and change of coordinates
have been computed to order in general magnetic geometry. Here
is the gyrokinetic expansion parameter, the gyroradius over the
macroscopic scale length. Starting from these results, the long-wavelength
limit of the gyrokinetic Fokker-Planck and quasineutrality equations is taken
for tokamak geometry. Employing the set of equations derived in the present
article, it is possible to calculate the long-wavelength components of the
distribution functions and of the poloidal electric field to order
. These higher-order pieces contain both neoclassical and turbulent
contributions, and constitute one of the necessary ingredients (the other is
given by the short-wavelength components up to second order) that will
eventually enter a complete model for the radial transport of toroidal angular
momentum in a tokamak in the low flow ordering. Finally, we provide an explicit
and detailed proof that the system consisting of second-order gyrokinetic
Fokker-Planck and quasineutrality equations leaves the long-wavelength radial
electric field undetermined; that is, the turbulent tokamak is intrinsically
ambipolar.Comment: 70 pages. Typos in equations (63), (90), (91), (92) and (129)
correcte
Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation
Bound states, also called soliton molecules, can form as a result of the
interaction between individual solitons. This interaction is mediated through
the tails of each soliton that overlap with one another. When such soliton
tails have spatial oscillations, locking or pinning between two solitons can
occur at fixed distances related with the wavelength of these oscillations,
thus forming a bound state. In this work, we study the formation and stability
of various types of bound states in the Lugiato-Lefever equation by computing
their interaction potential and by analyzing the properties of the oscillatory
tails. Moreover, we study the effect of higher order dispersion and noise in
the pump intensity on the dynamics of bound states. In doing so, we reveal that
perturbations to the Lugiato-Lefever equation that maintain reversibility, such
as fourth order dispersion, lead to bound states that tend to separate from one
another in time when noise is added. This separation force is determined by the
shape of the envelope of the interaction potential, as well as an additional
Brownian ratchet effect. In systems with broken reversibility, such as third
order dispersion, this ratchet effect continues to push solitons within a bound
state apart. However, the force generated by the envelope of the potential is
now such that it pushes the solitons towards each other, leading to a null net
drift of the solitons.Comment: 13 pages, 13 figure
Stable dark and bright soliton Kerr combs can coexist in normal dispersion resonators
Using the Lugiato-Lefever model, we analyze the effects of third order
chromatic dispersion on the existence and stability of dark and bright soliton
Kerr frequency combs in the normal dispersion regime. While in the absence of
third order dispersion only dark solitons exist over an extended parameter
range, we find that third order dispersion allows for stable dark and bright
solitons to coexist. Reversibility is broken and the shape of the switching
waves connecting the top and bottom homogeneous solutions is modified. Bright
solitons come into existence thanks to the generation of oscillations in the
switching wave profiles. Finally, oscillatory instabilities of dark solitons
are also suppressed in the presence of sufficiently strong third order
dispersion
Sources of intrinsic rotation in the low flow ordering
A low flow, gyrokinetic formulation to obtain the intrinsic
rotation profiles is presented. The momentum conservation equation in the low
flow ordering contains new terms, neglected in previous first principles
formulations, that may explain the intrinsic rotation observed in tokamaks in
the absence of external sources of momentum. The intrinsic rotation profile
depends on the density and temperature profiles and on the up-down asymmetry.Comment: 20 page
Visualizing recommendations to support exploration, transparency and controllability
Research on recommender systems has traditionally focused on the development of algorithms to improve accuracy of recommendations. So far, little research has been done to enable user interaction with such systems as a basis to support exploration and control by end users. In this paper, we present our research on the use of information visualization techniques to interact with recommender systems. We investigated how information visualization can improve user understanding of the typically black-box rationale behind recommendations in order to increase their perceived relevance and meaning and to support exploration and user involvement in the recommendation process. Our study has been performed using TalkExplorer, an interactive visualization tool developed for attendees of academic conferences. The results of user studies performed at two conferences allowed us to obtain interesting insights to enhance user interfaces that integrate recommendation technology. More specifically, effectiveness and probability of item selection both increase when users are able to explore and interrelate multiple entities - i.e. items bookmarked by users, recommendations and tags. Copyright © 2013 ACM
Stellarator bootstrap current and plasma flow velocity at low collisionality
The bootstrap current and flow velocity of a low-collisionality stellarator
plasma are calculated. As far as possible, the analysis is carried out in a
uniform way across all low-collisionality regimes in general stellarator
geometry, assuming only that the confinement is good enough that the plasma is
approximately in local thermodynamic equilibrium. It is found that conventional
expressions for the ion flow speed and bootstrap current in the
low-collisionality limit are accurate only in the -collisionality regime
and need to be modified in the -regime. The correction due to
finite collisionality is also discussed and is found to scale as
Relativity and Magnetism in Ni-Pd and Ni-Pt Alloys
We show that the differences in the magnetic properties of Ni-Pd and Ni-Pt
alloys arise mainly due to relativity. In particular, we find that the local
magnetic moment of Ni increases with the addition of Pd in Ni-Pd while it
decreases with the addition of Pt in Ni-Pt, as found experimentally, only if
relativity is present. Our analysis is based on the effects of relativity on
(i) the spin-polarized densities of states of Ni, (ii) the splitting of
majority and minority spin d-band centers of Ni, and (iii) the separation
between s-d band centers of Pd and Pt in Ni-Pd and Ni-Pt alloys.Comment: one figure added, a paragraph added in discussio
Canonical circuit quantization with linear nonreciprocal devices
Nonreciprocal devices effectively mimic the breaking of time-reversal
symmetry for the subspace of dynamical variables that they couple, and can be
used to create chiral information processing networks. We study the systematic
inclusion of ideal gyrators and circulators into Lagrangian and Hamiltonian
descriptions of lumped-element electrical networks. The proposed theory is of
wide applicability in general nonreciprocal networks on the quantum regime. We
apply it to pedagogical and pathological examples of circuits containing
Josephson junctions and ideal nonreciprocal elements described by admittance
matrices, and compare it with the more involved treatment of circuits based on
nonreciprocal devices characterized by impedance or scattering matrices.
Finally, we discuss the dual quantization of circuits containing phase-slip
junctions and nonreciprocal devices.Comment: 12 pages, 4 figures; changes made to match the accepted version in
PR
Welfare Reform and Substance Abuse: Innovative State Strategies
This issue brief highlights key facts about the impact of substance abuse on welfare reform and recipients of Temporary Assistance to Needy Families, or TANF. After outlining some of the data on the incidence of substance abuse as well as its costs and treatment, it concludes by describing innovative state welfare programs attempting to lower barriers to employment and self-sufficiency
- …