Nonreciprocal devices effectively mimic the breaking of time-reversal
symmetry for the subspace of dynamical variables that they couple, and can be
used to create chiral information processing networks. We study the systematic
inclusion of ideal gyrators and circulators into Lagrangian and Hamiltonian
descriptions of lumped-element electrical networks. The proposed theory is of
wide applicability in general nonreciprocal networks on the quantum regime. We
apply it to pedagogical and pathological examples of circuits containing
Josephson junctions and ideal nonreciprocal elements described by admittance
matrices, and compare it with the more involved treatment of circuits based on
nonreciprocal devices characterized by impedance or scattering matrices.
Finally, we discuss the dual quantization of circuits containing phase-slip
junctions and nonreciprocal devices.Comment: 12 pages, 4 figures; changes made to match the accepted version in
PR