47 research outputs found

    Soliton oscillations in collisionally inhomogeneous attractive Bose-Einstein condensates

    Get PDF
    We investigate bright matter-wave solitons in the presence of a spatially varying nonlinearity. It is demonstrated that a translation mode is excited due to the spatial inhomogeneity and its frequency is derived analytically and also studied numerically. Both cases of purely one-dimensional and ``cigar-shaped'' condensates are studied by means of different mean-field models, and the oscillation frequencies of the pertinent solitons are found and compared with the results obtained by the linear stability analysis.Numerical results are shown to be in very good agreement with the corresponding analytical predictions

    Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis

    Full text link
    In performing a Bayesian analysis of astronomical data, two difficult problems often emerge. First, in estimating the parameters of some model for the data, the resulting posterior distribution may be multimodal or exhibit pronounced (curving) degeneracies, which can cause problems for traditional MCMC sampling methods. Second, in selecting between a set of competing models, calculation of the Bayesian evidence for each model is computationally expensive. The nested sampling method introduced by Skilling (2004), has greatly reduced the computational expense of calculating evidences and also produces posterior inferences as a by-product. This method has been applied successfully in cosmological applications by Mukherjee et al. (2006), but their implementation was efficient only for unimodal distributions without pronounced degeneracies. Shaw et al. (2007), recently introduced a clustered nested sampling method which is significantly more efficient in sampling from multimodal posteriors and also determines the expectation and variance of the final evidence from a single run of the algorithm, hence providing a further increase in efficiency. In this paper, we build on the work of Shaw et al. and present three new methods for sampling and evidence evaluation from distributions that may contain multiple modes and significant degeneracies; we also present an even more efficient technique for estimating the uncertainty on the evaluated evidence. These methods lead to a further substantial improvement in sampling efficiency and robustness, and are applied to toy problems to demonstrate the accuracy and economy of the evidence calculation and parameter estimation. Finally, we discuss the use of these methods in performing Bayesian object detection in astronomical datasets.Comment: 14 pages, 11 figures, submitted to MNRAS, some major additions to the previous version in response to the referee's comment

    Efficient Bayesian inference for multimodal problems in cosmology

    Full text link
    Bayesian model selection provides the cosmologist with an exacting tool to distinguish between competing models based purely on the data, via the Bayesian evidence. Previous methods to calculate this quantity either lacked general applicability or were computationally demanding. However, nested sampling (Skilling 2004), which was recently applied successfully to cosmology by Muhkerjee et al. 2006, overcomes both of these impediments. Their implementation restricts the parameter space sampled, and thus improves the efficiency, using a decreasing ellipsoidal bound in the n-dimensional parameter space centred on the maximum likelihood point. However, if the likelihood function contains any multi-modality, then the ellipse is prevented from constraining the sampling region efficiently. In this paper we introduce a method of clustered ellipsoidal nested sampling which can form multiple ellipses around each individual peak in the likelihood. In addition we have implemented a method for determining the expectation and variance of the final evidence value without the need to use sampling error from repetitions of the algorithm ; this further reduces the computational load by at least an order of magnitude. We have applied our algorithm to a pair of toy models and one cosmological example where we demonstrate that the number of likelihood evaluations required is ~ 4% of that necessary for using previous algorithms. We have produced a fortran library containing our routines which can be called from any sampling code, in addition for convenience we have incorporated it into the popular CosmoMC code as CosmoClust. Both are available for download at http://www.mrao.cam.ac.uk/software/cosmoclust .Comment: 7 pages, 8 figures, changed to match version accepted by MNRA

    Cosmic Topology of Polyhedral Double-Action Manifolds

    Full text link
    A special class of non-trivial topologies of the spherical space S^3 is investigated with respect to their cosmic microwave background (CMB) anisotropies. The observed correlations of the anisotropies on the CMB sky possess on large separation angles surprising low amplitudes which might be naturally be explained by models of the Universe having a multiconnected spatial space. We analysed in CQG 29(2012)215005 the CMB properties of prism double-action manifolds that are generated by a binary dihedral group D^*_p and a cyclic group Z_n up to a group order of 180. Here we extend the CMB analysis to polyhedral double-action manifolds which are generated by the three binary polyhedral groups (T^*, O^*, I^*) and a cyclic group Z_n up to a group order of 1000. There are 20 such polyhedral double-action manifolds. Some of them turn out to have even lower CMB correlations on large angles than the Poincare dodecahedron

    The current status of observational cosmology

    Get PDF
    Observational cosmology has indeed made very rapid progress in recent years. The ability to quantify the universe has largely improved due to observational constraints coming from structure formation. The transition to precision cosmology has been spearheaded by measurements of the anisotropy in the cosmic microwave background (CMB) over the past decade. Observations of the large scale structure in the distribution of galaxies, high red-shift supernova, have provided the required complementary information. We review the current status of cosmological parameter estimates from joint analysis of CMB anisotropy and large scale structure (LSS) data. We also sound a note of caution on overstating the successes achieved thus far.Comment: 13 pages, 3 figures, Latex style files included, To appear in the proceedings of ICGC-04. Minor rewording in the abstract and introductio

    The spectral action and cosmic topology

    Get PDF
    The spectral action functional, considered as a model of gravity coupled to matter, provides, in its non-perturbative form, a slow-roll potential for inflation, whose form and corresponding slow-roll parameters can be sensitive to the underlying cosmic topology. We explicitly compute the non-perturbative spectral action for some of the main candidates for cosmic topologies, namely the quaternionic space, the Poincare' dodecahedral space, and the flat tori. We compute the corresponding slow-roll parameters and see we check that the resulting inflation model behaves in the same way as for a simply-connected spherical topology in the case of the quaternionic space and the Poincare' homology sphere, while it behaves differently in the case of the flat tori. We add an appendix with a discussion of the case of lens spaces.Comment: 55 pages, LaTe

    Matter-Wave Solitons in the Presence of Collisional Inhomogeneities: Perturbation theory and the impact of derivative terms

    Get PDF
    We study the dynamics of bright and dark matter-wave solitons in the presence of a spatially varying nonlinearity. When the spatial variation does not involve zero crossings, a transformation is used to bring the problem to a standard nonlinear Schrodinger form, but with two additional terms: an effective potential one and a non-potential term. We illustrate how to apply perturbation theory of dark and bright solitons to the transformed equations. We develop the general case, but primarily focus on the non-standard special case whereby the potential term vanishes, for an inverse square spatial dependence of the nonlinearity. In both cases of repulsive and attractive interactions, appropriate versions of the soliton perturbation theory are shown to accurately describe the soliton dynamics.Comment: 12 pages, 5 fugure

    Genome-wide association study of musical beat synchronization demonstrates high polygenicity

    Get PDF
    Moving in synchrony to the beat is a fundamental component of musicality. Here we conducted a genome-wide association study to identify common genetic variants associated with beat synchronization in 606,825 individuals. Beat synchronization exhibited a highly polygenic architecture, with 69 loci reaching genome-wide significance (P < 5 × 10−8) and single-nucleotide-polymorphism-based heritability (on the liability scale) of 13%–16%. Heritability was enriched for genes expressed in brain tissues and for fetal and adult brain-specific gene regulatory elements, underscoring the role of central-nervous-system-expressed genes linked to the genetic basis of the trait. We performed validations of the self-report phenotype (through separate experiments) and of the genome-wide association study (polygenic scores for beat synchronization were associated with patients algorithmically classified as musicians in medical records of a separate biobank). Genetic correlations with breathing function, motor function, processing speed and chronotype suggest shared genetic architecture with beat synchronization and provide avenues for new phenotypic and genetic explorations

    Collisionally inhomogeneous Bose-Einstein condensates in double-well potentials

    Get PDF
    In this work, we consider quasi-one-dimensional Bose-Einstein condensates (BECs), with spatially varying collisional interactions, trapped in double well potentials. In particular, we study a setup in which such a 'collisionally inhomogeneous' BEC has the same (attractive-attractive or repulsive-repulsive) or different (attractive-repulsive) type of interparticle interactions. Our analysis is based on the continuation of the symmetric ground state and anti-symmetric first excited state of the noninteracting (linear) limit into their nonlinear counterparts. The collisional inhomogeneity produces a saddle-node bifurcation scenario between two additional solution branches; as the inhomogeneity becomes stronger, the turning point of the saddle-node tends to infinity and eventually only the two original branches remain present, which is completely different from the standard double-well phenomenology. Finally, one of these branches changes its monotonicity as a function of the chemical potential, a feature especially prominent, when the sign of the nonlinearity changes between the two wells. Our theoretical predictions, are in excellent agreement with the numerical results.Comment: 14 pages, 12 figures, Physica D, in pres

    Suppressing CMB Quadrupole with a Bounce from Contracting Phase to Inflation

    Full text link
    Recent released WMAP data show a low value of quadrupole in the CMB temperature fluctuations, which confirms the early observations by COBE. In this paper, a scenario, in which a contracting phase is followed by an inflationary phase, is constructed. We calculate the perturbation spectrum and show that this scenario can provide a reasonable explanation for lower CMB anisotropies on large angular scales.Comment: 5 pages, 3 figure
    corecore