108 research outputs found

    CIRENE Air-Sea Interactions in the Seychelles-Chagos Thermocline Ridge Region

    Get PDF
    A field experiment in the southwestern Indian Ocean provides new insights into ocean-atmosphere interactions in a key climatic region

    Nutrients, oxygen and inferred new production in the Northeast Water Polynya 1992

    Get PDF
    Nutrient and oxygen distributions were measured during a hydrographic survey of the Northeast Water Polynya off the northeast coast of Greenland (77–81°N, 6–17°W) during July–August 1992 and were interpreted in the context of satellite imagery of the region. Satellite imagery revealed a convoluted plume of cold water flowing along isobaths from underneath fast ice in the southwestern portion of the polynya toward the northeast. This plume carried relatively high nutrient and low oxygen inventories. Nitrate to phosphate ratios were low in the polar water, consistent with an ultimate source of this water mass in the Pacific sector of the Arctic Ocean. It is hypothesized that the low N:P Arctic outflow might be the cause of nitrate limitation along the east coast of America as far as Cape Hatteras. Gradients of both nutrients and oxygen inventories in the euphotic zone were observed along and across the axis of mean flow within the polynya and are shown to be due to net production of organic matter. On the basis of these spatial gradients of nitrate and oxygen, an assumed along-axis current velocity of 10 cm s−1, and the observed relationships of biologically removed inorganic carbon with nitrate and oxygen, the net organic matter production was estimated to be 40–60 mmol(C) m−2 d−1. This represents the organic carbon available for export from the polynya euphotic zone. Nutrient-deficient and oxygen-rich waters were observed merging with the southward flowing East Greenland Current, suggestive of possible export, however, the ultimate fate of organic carbon produced within the polynya requires further study

    Saildrone: adaptively sampling the marine environment

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 101(6), (2020): E744-E762, doi:10.1175/BAMS-D-19-0015.1.From 11 April to 11 June 2018 a new type of ocean observing platform, the Saildrone surface vehicle, collected data on a round-trip, 60-day cruise from San Francisco Bay, down the U.S. and Mexican coast to Guadalupe Island. The cruise track was selected to optimize the science team’s validation and science objectives. The validation objectives include establishing the accuracy of these new measurements. The scientific objectives include validation of satellite-derived fluxes, sea surface temperatures, and wind vectors and studies of upwelling dynamics, river plumes, air–sea interactions including frontal regions, and diurnal warming regions. On this deployment, the Saildrone carried 16 atmospheric and oceanographic sensors. Future planned cruises (with open data policies) are focused on improving our understanding of air–sea fluxes in the Arctic Ocean and around North Brazil Current rings.The Saildrone data collection mission was sponsored by the Saildrone Award, an annual data collection mission awarded by Saildrone Inc., and the Schmidt Family Foundation. The research was funded by the NASA Physical Oceanography Program Grant 80NSSC18K0837 and 80NSSC18K1441. The work by T. M. Chin, J. Vazquez-Cuerzo, and V. Tsontos was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Piero L.F. Mazzini was supported by California Sea Grant Award NA18OAR4170073. We thank CeNCOOS for providing the HF radar data in the Gulf of the Farallones. Jose Gomez-Valdes was supported by CONACYT Grant 257125, and by CICESE. Work by Joel Scott and Ivona Cetinic was supported through NASA PACE. The work by Lisan Yu was supported by NOAA Ocean Observing and Monitoring Division under Grant NA14OAR4320158

    Cirene : air-sea iInteractions in the Seychelles-Chagos thermocline ridge region

    Get PDF
    Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 90 (2009): 1337-1350, doi:10.1175/2008BAMS2499.1.The Vasco—Cirene program ex-plores how strong air—sea inter-actions promoted by the shallow thermocline and high sea surface temperature in the Seychelles—Chagos thermocline ridge results in marked variability at synoptic, intraseasonal, and interannual time scales. The Cirene oceano-graphic cruise collected oceanic, atmospheric, and air—sea flux observations in this region in Jan-uary—February 2007. The contem-poraneous Vasco field experiment complemented these measure-ments with balloon deployments from the Seychelles. Cirene also contributed to the development of the Indian Ocean observing system via deployment of a moor-ing and 12 Argo profilers. Unusual conditions prevailed in the Indian Ocean during Janu-ary and February 2007, following the Indian Ocean dipole climate anomaly of late 2006. Cirene measurements show that the Seychelles—Chagos thermocline ridge had higher-than-usual heat content with subsurface anomalies up to 7°C. The ocean surface was warmer and fresher than average, and unusual eastward currents prevailed down to 800 m. These anomalous conditions had a major impact on tuna fishing in early 2007. Our dataset also sampled the genesis and maturation of Tropical Cyclone Dora, including high surface temperatures and a strong diurnal cycle before the cyclone, followed by a 1.5°C cool-ing over 10 days. Balloonborne instruments sampled the surface and boundary layer dynamics of Dora. We observed small-scale structures like dry-air layers in the atmosphere and diurnal warm layers in the near-surface ocean. The Cirene data will quantify the impact of these finescale features on the upper-ocean heat budget and atmospheric deep convection.CNES funded the Vasco part of the experiment; INSU funded the Cirene part. R/V SuroĂźt is an Ifremer ship. The contributions from ODU, WHOI, and FOI (Sweden) are supported by the National Science Foundation under Grant Number 0525657. The participation of the University of Miami group was funded though NASA (NNG04HZ33C). PMEL participation was supported through NOAA’s Office of Climate Observation

    'Barter', 'deals', 'bribes' and 'threats': Exploring Sibling Interactions

    Get PDF
    This paper investigates forms of strategic interaction between siblings during childhood. We argue that these interactions, characterised by notions of reciprocity, equivalence and constructions of fairness, are worked out in relation to responsibility, power, knowledge and sibling status. Birth order and age are not experienced as fixed hierarchies as they can be subverted, contested, resisted and negotiated. To explore these issues, in-depth individual and group interviews were conducted with a sample of 90 children between the ages of 5 and 17, drawn from 30 families of mixed socio-economic backgrounds in central Scotland with three siblings within this age range

    Engendering harm: a critique of sex selection for 'family balancing'

    Get PDF
    The most benign rationale for sex-selection is deemed to be “family balancing.” On this view, provided the sex-distribution of an existing offspring group is “unbalanced,” one may legitimately use reproductive technologies to select the sex of the next child. I present four novel concerns with granting “family balancing” as a justification for sex-selection: (a) families or family subsets should not be subject to medicalization; (b) sex selection for “family balancing” entrenches heteronormativity, inflicting harm in at least three specific ways; (c) the logic of affirmative action is appropriated; (d) the moral mandate of reproductive autonomy is misused. I conclude that the harms caused by “family balancing” are sufficiently substantive to over-ride any claim arising from a supposed right to sex selection as an instantiation of procreative autonomy

    Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure

    Get PDF
    © 2008 Author et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Health 7 (2008): S5, doi:10.1186/1476-069X-7-S2-S5.Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.The authors acknowledge the financial support for the NSF/NIEHS and NOAA Centers for Oceans and Human Healt

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement
    • 

    corecore