18,394 research outputs found
Wave packet dynamics of potassium dimers attached to helium nanodroplets
The dynamics of vibrational wave packets excited in K dimers attached to
superfluid helium nanodroplets is investigated by means of femtosecond
pump-probe spectroscopy. The employed resonant three-photon-ionization scheme
is studied in a wide wavelength range and different pathways leading to
K-formation are identified. While the wave packet dynamics of the
electronic ground state is not influenced by the helium environment,
perturbations of the electronically excited states are observed. The latter
reveal a strong time dependence on the timescale 3-8 ps which directly reflects
the dynamics of desorption of K off the helium droplets
Generalized Green'S Equivalences on the Subsemigroups of the Bicyclic Monoid
We study generalized Green's equivalences on all subsemigroups of the bicyclic monoid B and determine the abundant (and adequate) subsemigroups of B. © 2010 Copyright Taylor and Francis Group, LLC
The distribution of extremal points of Gaussian scalar fields
We consider the signed density of the extremal points of (two-dimensional)
scalar fields with a Gaussian distribution. We assign a positive unit charge to
the maxima and minima of the function and a negative one to its saddles. At
first, we compute the average density for a field in half-space with Dirichlet
boundary conditions. Then we calculate the charge-charge correlation function
(without boundary). We apply the general results to random waves and random
surfaces. Furthermore, we find a generating functional for the two-point
function. Its Legendre transform is the integral over the scalar curvature of a
4-dimensional Riemannian manifold.Comment: 22 pages, 8 figures, corrected published versio
Signed zeros of Gaussian vector fields-density, correlation functions and curvature
We calculate correlation functions of the (signed) density of zeros of
Gaussian distributed vector fields. We are able to express correlation
functions of arbitrary order through the curvature tensor of a certain abstract
Riemann-Cartan or Riemannian manifold. As an application, we discuss one- and
two-point functions. The zeros of a two-dimensional Gaussian vector field model
the distribution of topological defects in the high-temperature phase of
two-dimensional systems with orientational degrees of freedom, such as
superfluid films, thin superconductors and liquid crystals.Comment: 14 pages, 1 figure, uses iopart.cls, improved presentation, to appear
in J. Phys.
Quantum-enhanced capture of photons using optical ratchet states
Natural and artificial light harvesting systems often operate in a regime
where the flux of photons is relatively low. Besides absorbing as many photons
as possible it is therefore paramount to prevent excitons from annihilation via
photon re-emission until they have undergone an irreversible energy conversion
process. Taking inspiration from photosynthetic antenna structures, we here
consider ring-like systems and introduce a class of states we call ratchets:
excited states capable of absorbing but not emitting light. This allows our
antennae to absorb further photons whilst retaining the excitations from those
that have already been captured. Simulations for a ring of four sites reveal a
peak power enhancement by up to a factor of 35 under ambient conditions owing
to a combination of ratcheting and the prevention of emission through
dark-state population. In the slow extraction limit the achievable power
enhancement due to ratcheting alone exceeds 20%.Comment: major revision with improved model (all data and figures updated
Evaluation of enzyme immunoassays in the diagnosis of camel (Camelus dromedarius) trypanosomiasis:a preliminary investigation
Three enzyme immunoassays were used for the serodiagnosis of Trypanosoma evansi in camels in the Sudan in order to evaluate their ability to discriminate between infected and non-infected animals. Two assays were used for the detection of trypanosomal antibodies, one using specific anti-camel IgG conjugate and another using a non-specific Protein A conjugate. The third assay detected the presence of trypanosomal antigens using anti-T. evansi antibodies in a double antibody sandwich assay. Inspection of the frequency distribution of assay results suggested that the ELISA for circulating trypanosomal antibodies using specific antisera and the ELISA for circulating antigens can distinguish between non-infected camels and infected camels exhibiting patent infections or not. The ELISA using Protein A conjugate to bind non-specifically to camel immunoglobulin did not appear to discriminate between infected and non-infected animals
Metastable states of a flux line lattice studied by transport and Small Angle Neutron Scattering
Flux Lines Lattice (FLL) states have been studied using transport
measurements and Small Angle Neutron Scattering in low T materials. In
Pb-In, the bulk dislocations in the FLL do not influence the transport
properties. In Fe doped NbSe, transport properties can differ after a
Field Cooling (FC) or a Zero Field Cooling (ZFC) procedure, as previously
reported. The ZFC FLL is found ordered with narrow Bragg Peaks and is linked to
a linear V(I) curve and to a superficial critical current. The FC FLL pattern
exhibits two Bragg peaks and the corresponding V(I) curve shows a S-shape. This
can be explained by the coexistence of two ordered FLL slightly tilted from the
applied field direction by different superficial currents. These currents are
wiped out when the transport current is increased.Comment: accepted for publication in Phys. Rev.
Slow plasmon modes in polymeric salt solutions
The dynamics of polymeric salt solutions are presented. The salt consists of
chains and , which are chemically different and interact with a
Flory-interaction parameter , the chain ends carry a positive
charge whereas the chain ends are modified by negative charges. The
static structure factor shows a peak corresponding to a micro phase separation.
At low momentum transfer, the interdiffusion mode is driven by electrostatics
and is of the plasmon-type, but with an unusually low frequency, easily
accessible by experiments. This is due to the polymer connectivity that
introduces high friction and amplifies the charge scattering thus allowing for
low charge densities. The interdiffusion mode shows a minimum (critical slowing
down) at finite when the interaction parameter increases we find then a low
frequency quasi-plateau.Comment: accepted in Europhys. Let
Infinite partition monoids
Let and be the partition monoid and symmetric
group on an infinite set . We show that may be generated by
together with two (but no fewer) additional partitions, and we
classify the pairs for which is
generated by . We also show that may be generated by the set of all idempotent partitions
together with two (but no fewer) additional partitions. In fact,
is generated by if and only if it is
generated by . We also
classify the pairs for which is
generated by . Among other results, we show
that any countable subset of is contained in a -generated
subsemigroup of , and that the length function on
is bounded with respect to any generating set
Structure factor and thermodynamics of rigid dendrimers in solution
The ''polymer reference interaction site model'' (PRISM) integral equation
theory is used to determine the structure factor of rigid dendrimers in
solution. The theory is quite successful in reproducing experimental structure
factors for various dendrimer concentrations. In addition, the structure factor
at vanishing scattering vector is calculated via the compressibility equation
using scaled particle theory and fundamental measure theory. The results as
predicted by both theories are systematically smaller than the experimental and
PRISM data for platelike dendrimers.Comment: 7 pages, 5 figures, submitte
- …