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ABSTRACT

We study generalized Green’s equivalences on all subsemigroups of

the bicyclic monoid B and determine the abundant (and adequate) sub-

semigroups of B.

1 INTRODUCTION

The bicyclic monoid B, is one of the most fundamental semigroups, with many

remarkable properties and generalizations; see [1, 2, 6, 7, 8, 9, 10, 11, 12].

A description of the subsemigroups of the bicyclic monoid was obtained in

[3], and by using this description several properties about all subsemigroups

of B have been proved in [4] . In this paper we use this description to study

the generalized Green’s relations L∗ and R∗ of the subsemigroups of B. This

study is motivated by a J. Fountain’s question, who asked if the description

can be used to say which are the abundant and adequate subsemigroups of the

bicyclic monoid.

Let S be a semigroup and a, b ∈ S. We say that aL∗ b, if there is an

oversemigroup of S (a semigroup having S as a subsemigroup) where aL b. It

is known and it is easy to check that (see [5]) aL∗ b if and only if,

for all x, y ∈ S1 we have ax = ay ⇔ bx = by. (1)
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The relation R∗ is defined analogously as is the corresponding property. We

say that a semigroup is abundant if every L∗-class has an idempotent and every

R∗-class has an idempotent. An abundant semigroup is adequate if the set of

its idempotents forms a semilattice.

The bicyclic monoid B is defined by the monoid presentation 〈b, c | bc = 1〉;

a natural set of unique normal forms for B is {cibj : i, j ≥ 0} and we shall

identify B with this set. The normal forms multiply according to the following

rule:

cibjckbl =

{

ci−j+kbl if j ≤ k

cibj−k+l if j > k.

We are going to study the L∗-classes and R∗-classes of all subsemigroups

of the bicyclic monoid in order to determine the abundant subsemigroups. We

note that every set of idempotents from the bicyclic monoid is a semilattice

(indeed a chain) and so a subsemigroup of the bicyclic monoid is adequate if

and only if it is abundant.

We start by noting that two idempotents in the bicyclic monoid are al-

ways in separated L∗-classes (R∗-classes). In fact, given two idempotents say,

cibi, cjbj with i < j we can use (1) choosing x = cibi and y = cjbj. We have

cjbjx = cjbjy = cjbj but cibix = cibi which is not equal to cibiy = cjbj.

We will consider the different types of semigroups of B separately. Diagonal

subsemigroups, one of the types, are formed by idempotents and so trivially are

abundant. We begin by presenting some previous results giving the description

of the subsemigroups of B in Section 2, then in Sections 3 and 4 we make some

remarks that will be useful to study their L∗-classes and R∗-classes. Finally,

in Sections 5 and 6 we consider the two relevant types of subsemigroups, the

Upper and Two-sided subsemigroups, respectively.

2 PREVIOUS RESULTS

In this section we introduce the necessary notation and present the main result

from [3] with the description of the subsemigroups of B.

In order to define subsets of the bicyclic monoid it is convenient to see B

as an infinite square grid, as shown in Figure 1. We start by introducing some
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Figure 1: The bicyclic monoid

basic subsets of B:

D = {cibi : i ≥ 0} − the diagonal,

Lp = {cibj : 0 ≤ j < p, i ≥ 0} − the left strip (determined by p),

for p ≥ 0. For 0 ≤ q ≤ p ≤ m we define the triangle

Tq,p = {cibj : q ≤ i ≤ j < p}.

Note that for q = p this set is empty. For i,m ≥ 0 and d > 0 we define the

rows

Λi = {cibj : j ≥ 0}, Λi,m,d = {cibj : d | j − i, j ≥ m}

and in general for I ⊆ {0, . . . ,m− 1},

ΛI,m,d =
⋃

i∈I Λi,m,d = {cibj : i ∈ I, d | j − i, j ≥ m}.

For p ≥ 0, d > 0, r ∈ [d] = {0, . . . , d− 1} and P ⊆ [d] we define the squares

Σp = {cibj : i, j ≥ p}, Σp,d,r = {cp+r+udbp+r+vd : u, v ≥ 0},

Σp,d,P =
⋃

r∈P Σp,d,r = {cp+r+udbp+r+vd : r ∈ P ; u, v ≥ 0}.

Pictures illustrating some of these sets can be found in [3].

The function ρ : B → B defined by cibj 7→ (cibj)ρ = cjbi is an anti-

isomorphism. Geometrically ρ is the reflection with respect to the main diag-

onal.

We can now present the main result from [3]:

Proposition 2.1 Let S be a subsemigroup of the bicyclic monoid. Then one

of the following conditions holds:
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1. S is a subset of the diagonal; S ⊆ D.

2. S is a union of a subset of a triangle, a subset of the diagonal above

the triangle, a square below the triangle and some rows belonging to a

strip determined by the square and the triangle, or the reflection of such

a union with respect to the diagonal. Formally there exist q, p ∈ N0 with

q ≤ p, d ∈ N, I ⊆ {q, . . . , p − 1} with q ∈ I, P ⊆ {0, . . . , d − 1} with

0 ∈ P , FD ⊆ D ∩ Lq, F ⊆ Tq,p such that S is of one of the following

forms:

(i) S = FD ∪ F ∪ ΛI,p,d ∪ Σp,d,P ; or

(ii) S = FD ∪ (F )ρ ∪ (ΛI,p,d)ρ ∪ Σp,d,P .

3. There exist d ∈ N, I ⊆ N0, FD ⊆ D ∩ Lmin(I) and sets Si ⊆ Λi,i,d (i ∈ I)

such that S is of one of the following forms:

(i) S = FD ∪
⋃

i∈I

Si; or

(ii) S = FD ∪
⋃

i∈I

(Si)ρ;

where each Si has the form

Si = Fi ∪ Λi,mi,d

for some mi ∈ N0 and some finite set Fi, and

I = I0 ∪ {r + ud : r ∈ R, u ∈ N0, r + ud ≥ N}

for some (possibly empty) R ⊆ {0, . . . , d − 1}, some N ∈ N0 and some

finite set I0 ⊆ {0, . . . , N − 1}.

We call diagonal subsemigroups those defined by 1., two-sided subsemi-

groups those defined by 2., upper subsemigroups those defined by 3.(i) and

lower subsemigroups those defined by 3.(ii). Pictures illustrating the several

types of semigroups can be found in [3].
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3 L∗-CLASSES

In general, to study the L∗-classes of a subsemigroup S of B we have to consider

the equation ax = ay appearing in (1), in our introductory section, and the

following fact will be useful:

Lemma 3.1 We have ax = ay with a = cibj, x = crbs, y = cubv ∈ S, x 6= y,

i.e,

cibj crbs = cibj cubv

if and only if

j ≥ r, j ≥ u and s− r = v − u.

Proof. If j ≥ r, j ≥ u and s − r = v − u then cibjcrbs = cibj+s−r =

cibj+v−u = cibjcubv. For the converse let’s consider the four cases in the equa-

tion cibj crbs = cibj cubv. (i) j ≥ r, j ≥ u. In this case the equation becomes

cibj−r+s = cibj−u+v and so s − r = v − u as stated. (ii) j ≥ r, j < u. In

this case we obtain cibj−r+s = ci−j+ubv and so we have i = i − j + u (and

j − r + s = v) which implies j = u, a contradiction. Analogously we cannot

have (iii) j < r, j ≥ u. (iv) Finally we show that is also not possible to have

j < r, j < u. In this case the equation becomes ci−j+rbs = ci−j+ubv which

implies r = u, s = v and so x = y, which contradicts the hypothesis. �

Lemma 3.2 Let cibj, ckbl ∈ B, with j ≤ l. If cibjx = cibjy for some x, y ∈ B

then ckblx = ckbly.

Proof. The statement holds trivially if x = y, so assume that x 6= y. Let

x = crbs and y = cubv. Since cibj crbs = cibj cubv with crbs 6= cubv, using

Lemma 3.1, we have j ≥ r, j ≥ u and s − r = v − u. So, since l ≥ j ≥ r and

l ≥ j ≥ u, we have ckbl crbs = ckbl−r+s = ckbl+v−u = ckbl cubv. �

As an immediate consequence of this fact, we just have to check one of the

equivalences in (1):

Corollary 3.3 Two elements cibj, ckbl (j ≤ l) in a subsemigroup S of B are

L∗-related if and only if

ckblx = ckbly =⇒ cibjx = cibjy,∀x, y ∈ S1.
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Using this we can state a necessary and sufficient condition for two elements

A and B in a subsemigroup of B to be L∗-related, illustrated in Figure 2 (x

is in the horizontal shaded strip determined by the columns of A and B and y

in the shaded diagonal):

Figure 2: L∗-relation in the subsemigroups of the bicyclic monoid

Lemma 3.4 Two elements cibj, ckbl (j ≤ l) in a subsemigroup S of B are not

L∗-related if and only if there exist two different elements x = crbs, y = cubv ∈

S such that j < r ≤ l, u ≤ l and s− r = v − u.

Proof. Using Corollary 3.3, cibj and ckbl are not L∗-related if and only if

there exist two elements x, y ∈ S such that ckblx = ckbly and cibjx 6= cibjy.

Let x = crbs and y = cubv. Using Lemma 3.1, ckblx = ckbly is equivalent

to l ≥ r, l ≥ u and s − r = v − u, and cibjx 6= cibjy is equivalent to

j < r ∨ j < u ∨ s − r 6= v − u. Since s − r = v − u it must be that

j < r ∨ j < u. We can assume, without loss of generality, that j < r, whence

we have j < r ≤ l, u ≤ l, s− r = v − u. �

As a trivial consequence we have the following useful sufficient condition

for two elements to be L∗-related:
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Lemma 3.5 Let S be a subsemigroup of B and let cibj, ckbl ∈ S (j ≤ l). If S

has no elements in rows j + 1, . . . , l then cibj L∗ ckbl.

And we have the following corollary:

Corollary 3.6 Two elements of a subsemigroup S of B in the same column

are L∗-related.

This we knew already because two elements in the same column are L-

related in the bicyclic monoid.

Another consequence of Lemma 3.4 is the following:

Corollary 3.7 An L∗-class of S consists of a union of adjacent columns, i.e.,

there cannot exist two L∗-related elements A and B and another element C

not L∗-related to A and B in a column between them.

Proof. Let A = cibj, B = ckbl and C = cmbn (j ≤ n ≤ l). If A and

B are L∗-related then, by Lemma 3.4, elements x = crbs, y = cubv with

j < r ≤ l, u ≤ l and s − r = v − u cannot exist. Hence such elements

cannot exist with j < r ≤ n ≤ l and u ≤ n, so C L∗ A L∗B and C L∗ B by

transitivity. �

4 R∗-CLASSES

To obtain the corresponding facts for R∗-classes we will use the standard anti-

isomorphism of an inverse semigroup T to itself, ρ : T → T ; x 7→ x−1. We note

that (xy)ρ = (xy)−1 = y−1x−1. If S is a subsemigroup of T , we denote by S−1

the subsemigroup Sρ. If T is the bicyclic monoid B then ρ : B→ B; cibj 7→ cjbi

and

(cibjckbl)−1 = clbkcjbi. (2)

The following fact will be useful:

Lemma 4.1 If S is a subsemigroup of an inverse semigroup T and a, b ∈ S

then (a, b) ∈ L∗

S if and only if (a−1, b−1) ∈ R∗

S−1.
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Proof. Let a, b ∈ S. We have (a, b) ∈ L∗

S if and only if ax = ay ⇔ bx =

by (∀x, y ∈ S1). This happens if and only if (ax)−1 = (ay)−1 ⇔ (bx)−1 =

(by)−1 (∀x, y ∈ S1). This is equivalent to x−1a−1 = y−1a−1 ⇔ x−1b−1 =

y−1b−1 (∀x, y ∈ S1) what is the same as ua−1 = va−1 ⇔ ub−1 = vb−1 (∀u, v ∈

(S−1)1) and so (a−1, b−1) ∈ R∗

S−1 . �

In the case where T = S we have S = S−1 and so we can say:

Lemma 4.2 If S is an inverse semigroup and a, b ∈ S then (a, b) ∈ L∗ if and

only if (a−1, b−1) ∈ R∗.

Lemma 4.3 If xa = ya with a = cibj, x = crbs, y = cubv ∈ S, x 6= y, i.e,

crbs cibj = cubv cibj

then

i ≥ s, i ≥ v and r − s = u− v.

Proof.

We have xa = ya if and only if (xa)−1 = (ya)−1. By (2), we have (xa)−1 =

cjbicsbr and (ya)−1 = cjbicvbu and so, by Lemma 3.1, we have i ≥ s, i ≥

v and r − s = u− v.

�

Lemma 4.4 Let cibj, ckbl ∈ B, i ≤ k. If x cibj = y cibj then x ckbl = y ckbl,

for any x, y ∈ B, x 6= y.

Proof. If xcibj = ycibj then (xcibj)−1 = (ycibj)−1. So cjbix−1 = cjbiy−1

and, by Lemma 3.2, clbkx−1 = clbky−1. Hence, (xckbl)−1 = (yckbl)−1 and so

xckbl = yckbl. �

As an immediate consequence of this fact we have

Corollary 4.5 Two elements cibj, ckbl (i ≤ k) in a subsemigroup S of B are

R∗-related if and only if

x ckbl = y ckbl =⇒ x cibj = y cibj,∀x, y ∈ S1.
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The following lemma gives a necessary and sufficient condition for two

elements to be R∗-related and it is illustrated by Figure 3.

Lemma 4.6 Two elements cibj, ckbl (i ≤ k) in a subsemigroup S of B are not

R∗-related if and only if there exist two different elements x = crbs, y = cubv ∈

S such that i < s ≤ k, v ≤ k and r − s = u− v.

Proof. The elements cibj, ckbl are not R∗

S-related if and only if the ele-

ments cjbi, clbk are not L∗

S−1-related. By Lemma 3.4 this happens if and only

if there exists x−1 = csbr 6= cvbu = y−1 in S−1 such that i < s ≤ k, v ≤ k and

r − s = u − v. And so, if and only if, there exists x = crbs 6= cubv = y in S

such that i < s ≤ k, v ≤ k and r − s = u− v. �

Figure 3: R∗-relation in subsemigroups of the bicyclic monoid

Lemma 4.7 Let S be a subsemigroup of B and let cibj, ckbl ∈ S (i ≤ k). If

S has no elements in columns i + 1, . . . , k then cibjR∗ ckbl.

Corollary 4.8 Two elements of a subsemigroup S of B in the same row are

R∗-related.

Corollary 4.9 An R∗-class of S consists of adjacent rows, i.e., there cannot

exist two R∗-related elements A and B in S and another element C in S not

related with A and B in a row between them.
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Proof. If (cibj, ckbl) ∈ R∗

S then, by Lemma 4.1, (cjbi, clbk) ∈ L∗

S−1 . By

Corollary 3.7, cjbi and clbk are in union of adjacent rows in S−1, which means

that cibj and ckbl are in a union of adjacent columns in S. �

5 UPPER SUBSEMIGROUPS

Upper semigroups may be abundant or not. A simple example is the free mono-

genic semigroup, generated by b, which is a non abundant upper semigroup,

since it has no idempotents. We note that, since this semigroup is cancellative,

it has a unique L∗-class and a unique R∗-class. If we adjoin the identity to

it, we obtain the free monogenic monoid, which is an abundant upper sub-

semigroup of the bicyclic monoid, having one L∗-class and one R∗-class; both

contain an idempotent, the identity of the monoid.

We start by considering finitely generated upper subsemigroups. They have

the form S = FD ∪ F ∪ ΛI,m,d where I ⊆ N0, q = min (I) ≤ p = max (I) ≤ m,

d ∈ N, FD ⊆ {c
ibi : i < q}, F ⊆ {cibj : q ≤ i ≤ p, i ≤ j < m} are finite

sets, and ΛI,m,d = {cibj : i ∈ I, d | j − i, j ≥ m} (see [4]). This semigroup is

illustrated by Figure 4. In this section we assume that S is a semigroup of this

kind.

Figure 4: The region containing a semigroup S = FD ∪ F ∪ ΛI,m,d

10



We will first consider the case where FD = F = ∅. In this case, S = ΛI,m,d

is a finite union of special subsemigroups of N0 (numerical semigroups of the

form {kd : k ∈ N0, kd ≥ N} with d,N ∈ N0, d > 0). We will show that

this subsemigroup has only one L∗-class and only one R∗-class. In fact, given

two elements cibj, ckbl ∈ S, with j ≤ l, there are no elements of S in rows

j + 1, . . . , l because j + 1 > m and all elements of S are in rows q, . . . , p with

p ≤ m. So using Lemma 3.5 we see that cibj, ckbl are L∗-related. To see that

there is also only oneR∗-class, we can take two arbitrary elements cibj, ckbl ∈ S

with i ≤ k (≤ p ≤ m). Since S has no elements in columns i + 1, . . . , k − 1,

we cannot find two different elements x, y in the conditions of Lemma 4.6, not

even in the case where p = m. Hence cibj, ckbl are R∗-related. Having only a

L∗-class and only aR∗-class, for the subsemigroup to be abundant it just needs

to contain one idempotent. This is only possible if m = p and the idempotent

cpbp belongs to S. We summarize this in the following

Proposition 5.1 An upper subsemigroup S of B of the form S = ΛI,m,d has

a unique R∗-class and a unique L∗-class. It is abundant if and only if m = p

and cpbp ∈ S.

We consider now subsemigroups of the form S = FD ∪ ΛI,m,d where FD =

{e1, . . . , en} (n ≥ 1). If I has only one element, say I = {p}, then S is

in fact obtained starting from the numerical semigroup ΛI,m,d and adding

successively the identities en, en−1, . . . e1. The elements of Λp,m,d together

with the idempotent of S that is lower in the diagonal (which may be cpbp)

form a cancellative monoid, hence having a unique L∗-class and R∗-class.

Each other idempotent in FD is by itself an L∗-class and an R∗-class. So,

if cpbp ∈ S the classes are {e1}, {e2}, . . . , {en}, Λp,m,d. Otherwise the classes

are {e1}, {e2}, . . . , {en} ∪ Λp,m,d. In any case the subsemigroup is abundant.

Proposition 5.2 An upper semigroup of the form S = FD ∪ Λp,m,d with

FD = {e1, . . . , en} (n ≥ 1) is abundant. If Λp,m,d has an idempotent the

L∗-classes and R∗-classes are {e1}, {e2}, . . . , {en}, Λp,m,d. Otherwise they are

{e1}, {e2}, . . . , {en} ∪ Λp,m,d.

We continue with S = FD ∪ ΛI,m,d where FD = {e1, . . . , en} (n ≥ 1) but

assuming now that I has more than one element. Let’s first consider the case
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where cpbp ∈ ΛI,m,d (m = p). In this case, two elements cibj, cpbk ∈ ΛI,m,d with

i < p are not R∗-related since, letting x be the lower idempotent in FD and

y = cpbp, the elements x and y are in the conditions of Lemma 4.6. But any two

elements cibj, ckbl ∈ ΛI,m,d with i, j < p are R∗-related since S has no elements

in columns q, . . . , p− 1 and we can use Lemma 4.7. The lower idempotent in

FD, say e = cibi, is R∗-related to any element ckbl in rows I\{p} because k < p

and S has no elements in columns i + 1, . . . , p− 1. The other idempotents in

FD are R∗-classes by themselves. So every R∗-class has an idempotent. The

R∗-classes of these subsemigroups are illustrated by the example in Figure 5.

Two elements cibj, ckbl ∈ ΛI,m,d are L∗-related because j, l ≥ p, there are

no elements in S below row p and so we can use Lemma 3.5. These L∗-class

contains already one idempotent, cpbp, and so the other idempotents in FD are

L∗-classes by themselves. Hence, also every L∗-class has an idempotent and

the semigroup is abundant.

The case where cpbp /∈ S can also be illustrated by Figure 5, removing the

last row. We show that, in this case, the set ΛI,m,d is an L∗-class of S without

an idempotent, and so the semigroup is not abundant. The elements in ΛI,m,d

are still L∗-related. But the lower idempotent cibi ∈ FD is not related to them,

since, given ckbl ∈ ΛI,m,d, we can find two elements x = cjbj+ud, y = ckbk+vd ∈

ΛI,m,d in the same diagonal and in different rows, in the conditions of Lemma

3.4.

Proposition 5.3 An upper semigroup of the form S = FD∪ΛI,m,d with FD =

{e1, . . . , en} (n ≥ 1) and |I| > 1 is abundant if and only if m = p and cpbp ∈

ΛI,m,d. In this case the L∗-classes andR∗-classes are {e1}, {e2}, . . . , {en}, ΛI,m,d.

Finally we consider arbitrary finitely generated upper semigroups S = FD∪

F ∪ ΛI,m,d where F 6= ∅. We note that, if I has only one element, then S is

again obtained from a numerical semigroup adding finitely many idempotents

and so we have:

Proposition 5.4 A subsemigroup of the form FD∪F∪Λp,m,d, FD = {e1, . . . , en}

(n ≥ 0) is abundant if and only if it contains at least one idempotent. If

cpbp ∈ S the L∗-classes and R∗-classes are {e1}, {e2}, . . . , {en}, ΛI,m,d. Other-

wise the classes are {e1}, {e2}, . . . , {en} ∪ ΛI,m,d.
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Figure 5: R-classes of S = FD ∪ ΛI,m,d

So we assume now that I has a at least two elements. To identify the L∗-

classes of S, it is convenient to write S = FD ∪ F ′ ∪ S ′, where F ′ = S ∩ {cibj :

q ≤ i ≤ j < p} and S ′ = S ∩ {cibj : j ≥ p}, as illustrated in Figure 6.

The elements in S ′ are L∗-related because they are on columns p, p + 1, . . .

and, since there are no elements in S below row p, we can use Lemma 3.5.

An element cibj ∈ F ′ is not L∗-related to an element ckbl ∈ S ′. In fact, since

S has elements in row p and i, j < p, we can choose two different elements

x = cpbp+ud, y = cibi+vd in the same diagonal, in the conditions of Lemma

3.4. Hence, if F ′ 6= ∅ then S ′ is an L∗-classe of S. Also in the case where

F ′ = ∅ the set S ′ is an L∗-class of S. This is shown if FD = ∅. And if FD 6= ∅,

we can see that the lower idempotent in FD is not L∗-related say, with an

element cpbk ∈ S ′ because we can choose two different elements x = cpbp+ud

and y = cibi+vd in S with i < p in the same diagonal, and use Lemma 3.4. So,

in any case, S ′ is an L∗-class of S and for S to be abundant it must contain

the idempotent cpbp.

We continue the study of L∗-classes considering now the elements in F ′,

which are in finitely many columns. For the semigroup to be abundant, each

L∗-classe, that may be formed by the elements in one or more columns, must

contain an idempotent. In Figure 7, we find an example of an abundant
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Figure 6: Determining the L∗-classes of S = FD ∪ F ∪ ΛI,m,d

subsemigroup where some columns with elements do not have idempotents.

To check if all L∗-classes of elements in FD ∪ F ′ have idempotents we just

have to form unions with the p− q columns. To do that, we start by observing

that if two columns i, j with elements with q ≤ i < j < p, are in the same

L∗-class, then cjbj cannot be in the class. In fact, if cjbj were in the class then,

given two elements ckbi, clbj we could obtain x = cjbj+ud, y = ckbk+vd in the

conditions of Lemma 3.4 and ckbi, clbj would not be related. So, the idempotent

in an L∗-class with elements from F ′ is either in the leftmost column or in FD.

Hence, to check if all classes have idempotents we can proceed the following

way. We begin by forming a union of rows with elements, L, starting from

first column i ≤ p − 1 with elements and going left. If we have already an

idempotent we start forming next class. If not we add next column j < i with

elements to L, if there are no elements in rows j +1, . . . , i. We proceed adding

columns until no more columns can be added. After that, if the last column

does not have an idempotent in S (and there are still other columns with

elements in F ′ on the left) we have found an L∗-class without an idempotent.

Otherwise L is an L∗-class with idempotent and we start forming the next

class. After going through all columns of F ′ two things may happen. If the

final union of rows L has an idempotent then all L∗-classes have idempotents.

14



Figure 7: An abundant upper subsemigroup

If not, it may be possible that all L∗-classes have idempotents if FD 6= ∅. This

can only occur if there is only one row in S with elements in rows k + 1, . . . , l,

where k is the minimum of column indices in L and l is the maximum. In fact,

we see using Lemma 3.4 that only in this case the lower idempotent in FD is

L∗-related to the elements in L.

To check if the R∗-classes have idempotents we can proceed in a similar

way. There are finitely many rows with elements and R∗-classes are unions of

adjacent rows. We start from row i = p and go up adding rows and forming

R∗-classes. We consider the next row j (= max(I\{i}) in I. Using Lemma 4.6

we see that, elements in rows i and j are R∗-related if and only if S has no

elements in columns i + 1, . . . , j or, for each element A in columns i + 1, . . . , j

we cannot find another element B in columns 0, . . . , j in the same diagonal

as A. Proceeding this way we can form the R∗-classes, which are at most

|I|+ |FD|, and check if they all have idempotents.

These algorithms allows us to check if a general upper subsemigroup of the

form FD ∪ F ∪ ΛI,m,d is abundant. Hence we can say the following

Proposition 5.5 Let S = FD ∪ F ∪ ΛI,m,d be an upper subsemigroup of B.

Writing S = FD ∪ F ′ ∪ S ′, where F ′ = S ∩ {cibj : q ≤ i ≤ j < p} and

S ′ = S ∩ {cibj : j ≥ p}, the set S ′ is an L∗-class of S. For S to be abundant
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it is necessary that cpbp ∈ S. There exist algorithms to construct the other

finitely many L∗-classes and R∗-classes of S from the finitely many elements

of S in columns 0, . . . , p and the finite set I. The semigroup is abundant if

and only if these finitely many L∗-classes and R∗-classes have idempotents.

The algorithms to check if a upper subsemigroup is abundant follows. We

have seen it is necessary that cpbp ∈ S for S to be abundant. Then we can

check if all L∗-classes have idempotents with the algorithm in Figure 8, where

C is the set of indices of columns having elements in F ′ ∩ S.

isabundant ← true

L← ∅

while C 6= ∅ and isabundant

do

i← max(C); C ← C\{i}; L← L ∪ {i}

if cibi ∈ S then L← ∅

else

if C = ∅ then

if FD = ∅ or {min(C) + 1, . . . , max(C)} ∩ I > 1

then isabundant ← false

else

j ← max(C)

if {j + 1, . . . , i} ∩ I = ∅ then isabundant ← false fi

fi

fi

od

Figure 8: Algorithm to check if all L∗-classes have indempotents

To check if all R∗-classes have idempotents we can the use the algorithm

in Figure 9.

Finitely generated lower subsemigroups are similar, just replacing rows by

columns.

If S is a non finitely generated upper subsemigroup, so with elements in

an infinite number of rows, then there is no algorithm to check if S is abun-
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isabundant ← true

R← ∅

while I 6= ∅ and isabundant

do

i← max(I); I ← I\{i}; R← R ∪ {i}

if I = ∅ then

if
⋃

k∈R

{ckbk} = ∅ and FD = ∅ then isabundant ← false fi

else

j ← max(I)

if ¬R related(j, i) then

if
⋃

k∈R

{ckbk} = ∅ then isabundant ← false fi

fi

fi

od

where

R related(j, i) = (∃u : −p ≤ u ≤ p : cj+ubj, ci+ubi ∈ S)

Figure 9: Algorithm to check if all R∗-classes have indempotents
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dant. In fact, we cannot decide if S is abundant, looking to finitely many

rows, because we can always add a row without idempotent to an abundant

semigroup obtaining a non abundant subsemigroup. For example, the semi-

group S = {cibj : 0 ≤ i < p, j ≥ i} (p > 0) is abundant and the semigroup

S ∪ {cpbj : j > p} is not.

Of course there is a procedure to check if S is not abundant. It suffices

to construct the L∗-classes (R∗-classes), which are unions of columns (rows),

until a class without idempotent is found, using Lemma 3.4 (Lemma 4.6).

6 TWO SIDED SUBSEMIGROUPS

In general, a two-sided semigroup has the form S = FD ∪ F ∪ ΛI,p,d ∪ Σp,d,P

(or the corresponding anti-isomorphic image) where q, p ∈ N0 with q ≤ p,

d ∈ N, I ⊆ {q, . . . , p − 1} with q ∈ I, P ⊆ {0, . . . , d − 1} with 0 ∈ P ,

FD ⊆ {c
ibi : i = 0, . . . , q − 1}, F ⊆ {cibj : q ≤ i < p, i ≤ j < p}, Σp,d,P =

{cp+r+udbp+r+vd : r ∈ P ; u, v ≥ 0} (see [3]). Figure 10 shows an example of one

of this subsemigroups.

We note that a two-sided semigroup of the form FD ∪Σp,d,P is regular (see

[3]) and so abundant. Each of its L∗-classes and R∗-classes is contained in

single row or column and all have an idempotent. We start by showing the

following:

Proposition 6.1 Subsemigroups of the form S = ΛI,p,d ∪ Σp,d,P (with FD =

F = ∅) are abundant.

Proof. If I = ∅ we have seen that S is abundant, so we assume I 6= ∅.

We begin by showing that two columns i, j (i < j) such that, the set {ckbk :

i ≤ k ≤ j} ∩S is either empty or equal to {cibi}, are L∗-related. In fact, since

i, j ≥ p, the rows i + 1, . . . , j are in Σp. A row k in Σp has elements from S if

and only if ckbk ∈ S. Hence S has no elements in rows i+1, . . . , j and Lemma

3.5 can be applied.

Using this, and observing thet 0 ∈ P and so cpbp ∈ S, we see that every L∗-

class is a union of columns starting from a column with an idempotent together

with all columns on its right hand side not having idempotents. Hence, every

L∗-class has an idempotent.
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Figure 10: Two-sided subsemigroup generated by

{cb, c4b7, c10b13, c18b24, c23b17}.

Each row in p + 1, p + 2, . . . with elements in S is an R∗-class with idem-

potent. The elements in S ∩{cibj : 0 ≤ i ≤ p, j ≥ p} are R∗-related because S

has no elements in columns q, . . . , p− 1 and Lemma 4.6 can be applied. Hence

every R∗-class has an idempotent. �

Corollary 6.2 Every simple subsemigroup of the bicyclic monoid is abundant.

Proof. As shown in [3] these are the simple subsemigroups of the bicyclic

monoid. �

We consider now a general two sided semigroup S = FD∪F ∪ΛI,p,d∪Σp,d,P .

For columns in ΛI,p,d∪Σp,d,P , the argument in the proof of Proposition 6.1 can

be applied and so the classes with these elements have idempotents. Elements

in columns p− 1 and p are note related because we can take x = cpbp+ud, y =

cibi+vd (i < p) in the conditions of Lemma 3.4. To form the L∗-classes with
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the elements in columns p − 1, p − 2, . . . we just look to rows i < p and so to

FD ∪F ∪ΛI,p,d. Hence we just have to apply the algorithm in Figure 8, where

C is the set of indices of columns i < p with elements in S.

Each row in Σp,d,P is in a separate R∗-class with idempotent. We note that

rows p and p − 1 are not related if FD ∪ F 6= ∅. In fact, if FD 6= ∅ then the

elements x = cpbp, y ∈ FD are in the conditions of Lemma 4.6. And if F 6= ∅

we can also find two elements x = cp−udbp, y ∈ F in the conditions of Lemma

4.6. Hence, to check if all R∗-classes have idempotents, we just have to look to

rows in FD ∪F ∪Σp,d,P and columns 0, . . . , p− 1 and we can use the algorithm

in Figure 9.
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