1,706 research outputs found

    Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM

    Get PDF
    The eruption of Mount Pinatubo produced the largest loading of stratospheric sulphate aerosol in the twentieth century. This heated the tropical lower stratosphere, affecting stratospheric circulation, and provided enhanced surface area for heterogeneous chemistry. These factors combined to produce record low values of "global" total ozone column. Though well studied, there remains some uncertainty about the attribution of this low ozone, with contributions from both chemical and dynamical effects. We take a complementary approach to previous studies, nudging the potential temperature and horizontal winds in the new UKCA chemistry climate model to reproduce the atmospheric response and assess the impact on global total ozone. We then combine model runs and observations to distinguish between chemical and dynamical effects. To estimate the effects of increased heterogeneous chemistry on ozone we compare runs with volcanically enhanced and background surface aerosol density. The modelled depletion of global ozone peaks at about 7 DU in early 1993, in good agreement with values obtained from observations. We subtract the modelled aerosol induced ozone loss from the observed ozone record and attribute the remaining variability to `dynamical' effects. The remaining variability is dominated by the QBO. We also examine tropical and mid-latitude ozone, diagnosing contributions from El Niño in the tropics and identifying dynamically driven low ozone in northern mid-latitudes, which we interpret as possible evidence of changes in the QBO. We conclude that, on a global scale, the record lows of extra-polar ozone are produced by the increased heterogeneous chemistry, although there is evidence for dynamics produced low ozone in certain regions, including northern mid-latitudes

    Technical Note: Description and assessment of a nudged version of the new dynamics Unified Model

    Get PDF
    International audienceWe present a "nudged" version of the Met Office general circulation model, the Unified Model. We constrain this global climate model using ERA-40 re-analysis data with the aim of reproducing the observed "weather" over a year from September 1999. Quantitative assessments are made of its performance, focusing on dynamical aspects of nudging and demonstrating that the "weather" is well simulated

    Female Surfers Riding the Crest of a ‘New Wave’ of Irish National Identity

    Get PDF
    With surfing debuting at the 2021 Tokyo Olympics (postponed from summer 2020 due to the COVID 19 global pandemic) it is timely to consider surfing and the national identifications women in Ireland may have with this sport. As Lee Bush states, 'with so little scholarship on surfing women, descriptive studies are needed as a foundation for launching future interpretive and critical studies.' Twelve women who surf in Ireland spoke about the links their surfing may or may not have with their national identity. Previous academic inquiry on links between national identity and sport on the island of Ireland has almost exclusively focused on men's experiences of team sports and issues of 'Irishness'. 'Irishness' is globally recognised and stereotypically linked to traditional and indigenous Irish sports such as Gaelic football and a range of other cultural activities. Research into women's sport participation has largely been restricted to the study of soccer in the Republic of Ireland, and gendered evaluations of various lifestyle and health surveys. Katie Liston, a key researcher in sport and gender relations in Ireland, highlights that 'there seems to be an increasing diversity in the kinds of activities in which people participate in', and that there is a shift towards 'lifestyle' activities for adults as diversity increases in young people's participation in sports and leisure activities. Against the backdrop of Liston's work, this article delves deeper into data collected as part of a wider research project, discussing whether or not women who surf in Ireland do so as part of a process designed to construct and reflect their national identities related to this arguably 'postmodern' 'lifestyle sport', in which Ireland will be represented on the Olympic stage for the first time in 2021

    Deletions of the derivative chromosome 9 occur at the time of the Philadelphia translocation and provide a powerful and independent prognostic indicator in chronic myeloid leukemia

    Get PDF
    Chronic myeloid leukemia (CML) is characterized by formation of the BCR-ABL fusion gene, usually as a consequence of the Philadelphia (Ph) translocation between chromosomes 9 and 22. Large deletions on the derivative chromosome 9 have recently been reported, but it was unclear whether deletions arose during disease progression or at the time of the Ph translocation. Fluorescence in situ hybridization (FISH) analysis was used to assess the deletion status of 253 patients with CML. The strength of deletion status as a prognostic indicator was then compared to the Sokal and Hasford scoring systems. The frequency of deletions was similar at diagnosis and after disease progression but was significantly increased in patients with variant Ph translocations. In patients with a deletion, all Ph+ metaphases carried the deletion. The median survival of patients with and without deletions was 38 months and 88 months, respectively (P = .0001). By contrast the survival difference between Sokal or Hasford high-risk and non-high-risk patients was of only borderline significance (P = .057 and P = .034). The results indicate that deletions occur at the time of the Ph translocation. An apparently simple reciprocal translocation may therefore result in considerable genetic heterogeneity ab initio, a concept that is likely to apply to other malignancies associated with translocations. Deletion status is also a powerful and independent prognostic factor for patients with CML. The prognostic significance of deletion status should now be studied prospectively and, if confirmed, should be incorporated into management decisions and the analysis of clinical trials. (C) 2001 by The American Society of Hematology

    Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo

    Get PDF
    In the 1990s the rates of increase of greenhouse gas concentrations, most notably of methane, were observed to change, for reasons that have yet to be fully determined. This period included the eruption of Mt. Pinatubo and an El Nino warm event, both of which affect biogeochemical processes, by changes in temperature, precipitation and radiation. We examine the impact of these changes in climate on global isoprene emissions and the effect these climate dependent emissions have on the hydroxy radical, OH, the dominant sink for methane. We model a reduction of isoprene emissions in the early 1990s, with a maximum decrease of 40 Tg(C)/yr in late 1992 and early 1993, a change of 9%. This reduction is caused by the cooler, drier conditions following the eruption of Mt. Pinatubo. Isoprene emissions are reduced both directly, by changes in temperature and a soil moisture dependent suppression factor, and indirectly, through reductions in the total biomass. The reduction in isoprene emissions causes increases of tropospheric OH which lead to an increased sink for methane of up to 5 Tg(CH4)/year, comparable to estimated source changes over the time period studied. There remain many uncertainties in the emission and oxidation of isoprene which may affect the exact size of this effect, but its magnitude is large enough that it should remain important

    Circulation anomalies in the Southern Hemisphere and ozone changes

    Get PDF
    We report results from two pairs of chemistryclimate model simulations using the same climate model but different chemical perturbations. In each pair of experiments an ozone change was triggered by a simple change in the chemistry. One pair of model experiments looked at the impact of polar stratospheric clouds (PSCs) and the other pair at the impact of short-lived halogenated species on composition and circulation. The model response is complex with both positive and negative changes in ozone concentration, depending on location. These changes result from coupling between composition, temperature and circulation. Even though the causes of the modelled ozone changes are different, the high latitude Southern Hemisphere response in the lower stratosphere is similar. In both pairs of experiments the high-latitude circulation changes, as evidenced by N2O differences, are suggesting a slightly longer-lasting/stronger stratospheric descent in runs with higher ozone destruction (a manifestation of a seasonal shift in the circulation). We contrast the idealised model behaviour with interannual variability in ozone and N2O as observed by the MIPAS instrument on ENVISAT, highlighting similarities of the modelled climate equilibrium changes to the year 2006–2007 in observations. We conclude that the climate system can respond quite sensitively in its seasonal evolution to small chemical perturbations, that circulation adjustments seen in the model can occur in reality, and that coupled chemistry-climate models allow a better assessment of future ozone and climate change than recent CMIP-type models with prescribed ozone fields

    Global Multi-Year O3-CO Correlation Patterns from Models and TES Satellite Observations

    Get PDF
    The correlation between measured tropospheric ozone (O3) and carbon monoxide (CO) has been used extensively in tropospheric chemistry studies to explore the photochemical characteristics of different regions and to evaluate the ability of models to capture these characteristics. Here, we present the first study that uses multi-year, global, vertically resolved, simultaneous and collocated O3 and CO satellite (Tropospheric Emission Spectrometer) measurements, to determine this correlation in the middle/lower free troposphere for two different seasons, and to evaluate two chemistry-climate models. We find results that are fairly robust across different years, altitudes and timescales considered, which indicates that the correlation maps presented here could be used in future model evaluations. The highest positive correlations (around 0.8) are found in the northern Pacific during summer, which is a common feature in the observations and the G-PUCCINI model. We make quantitative comparisons between the models using a single-figure metric (C), which we define as the correlation coefficient between the modeled and the observed O3-CO correlations for different regions of the globe. On a global scale, the G-PUCCINI model shows a good performance in the summer (C =0.71) and a satisfactory performance in the winter (C = 0.52). It captures midlatitude features very well, especially in the summer, whereas the performance in regions like South America or Central Africa is weaker. The UKCA model (C = 0.46/0.15 for July-August/December-January on a global scale) performs better in certain regions, such as the tropics in winter, and it captures some of the broad characteristics of summer extratropical correlations, but it systematically underestimates the O3-CO correlations over much of the globe. It is noteworthy that the correlations look very different in the two models, even though the ozone distributions are similar. This demonstrates that this technique provides a powerful global constraint for understanding modeled tropospheric chemical processes. We investigated the sources of the correlations by performing a series of sensitivity experiments. In these, the sign of the correlation is, in most cases, insensitive to removing different individual emissions, but its magnitude changes downwind of emission regions when applying such perturbations. Interestingly, we find that the O3-CO correlation does not solely reflect the strength of O3 photochemical production, as often assumed by earlier studies, but is more complicated and may reflect a mixture of different processes such as transport
    corecore