14,738 research outputs found
Stratigraphy and chronology of a 15ka sequence of multi-sourced silicic tephras in a montane peat bog, eastern North Island, New Zealand.
We document the stratigraphy, composition, and chronology of a succession of 16 distal, silicic tephra layers interbedded with lateglacial and Holocene peats and muds up to c. 15 000 radiocarbon years (c. 18 000 calendar years) old at a montane site (Kaipo Bog) in eastern North Island, New Zealand. Aged from 665 +/- 15 to 14 700 +/- 95 14C yr BP, the tephras are derived from six volcanic centres in North Island, three of which are rhyolitic (Okataina, Taupo, Maroa), one peralkaline (Tuhua), and two andesitic (Tongariro, Egmont). Correlations are based on multiple criteria: field properties and stratigraphic interrelationships, ferromagnesian silicate mineral assemblages, glass-shard major element composition (from electron microprobe analysis), and radiocarbon dating. We extend the known distribution of tephras in eastern North Island and provide compositional data that add to their potential usefulness as isochronous markers. The chronostratigraphic framework established for the Kaipo sequence, based on both site-specific and independently derived tephra-based radiocarbon ages, provides the basis for fine-resolution paleoenvironmental studies at a climatically sensitive terrestrial site from the mid latitudes of the Southern Hemisphere. Tephras identified as especially useful paleoenvironmental markers include Rerewhakaaitu and Waiohau (lateglacial), Konini (lateglacial-early Holocene), Tuhua (middle Holocene), and Taupo and Kaharoa (late Holocene)
Hydrodynamic induced deformation and orientation of a microscopic elastic filament
We describe simulations of a microscopic elastic filament immersed in a fluid
and subject to a uniform external force. Our method accounts for the
hydrodynamic coupling between the flow generated by the filament and the
friction force it experiences. While models that neglect this coupling predict
a drift in a straight configuration, our findings are very different. Notably,
a force with a component perpendicular to the filament axis induces bending and
perpendicular alignment. Moreover, with increasing force we observe four shape
regimes, ranging from slight distortion to a state of tumbling motion that
lacks a steady state. We also identify the appearance of marginally stable
structures. Both the instability of these shapes and the observed alignment can
be explained by the combined action of induced bending and non-local
hydrodynamic interactions. Most of these effects should be experimentally
relevant for stiff micro-filaments, such as microtubules.Comment: three figures. To appear in Phys Rev Let
Modelling the Galactic Magnetic Field on the Plane in 2D
We present a method for parametric modelling of the physical components of
the Galaxy's magnetised interstellar medium, simulating the observables, and
mapping out the likelihood space using a Markov Chain Monte-Carlo analysis. We
then demonstrate it using total and polarised synchrotron emission data as well
as rotation measures of extragalactic sources. With these three datasets, we
define and study three components of the magnetic field: the large-scale
coherent field, the small-scale isotropic random field, and the ordered field.
In this first paper, we use only data along the Galactic plane and test a
simple 2D logarithmic spiral model for the magnetic field that includes a
compression and a shearing of the random component giving rise to an ordered
component. We demonstrate with simulations that the method can indeed constrain
multiple parameters yielding measures of, for example, the ratios of the
magnetic field components. Though subject to uncertainties in thermal and
cosmic ray electron densities and depending on our particular model
parametrisation, our preliminary analysis shows that the coherent component is
a small fraction of the total magnetic field and that an ordered component
comparable in strength to the isotropic random component is required to explain
the polarisation fraction of synchrotron emission. We outline further work to
extend this type of analysis to study the magnetic spiral arm structure, the
details of the turbulence as well as the 3D structure of the magnetic field.Comment: 18 pages, 11 figures, updated to published MNRAS versio
Dynamics of Turing patterns under spatio-temporal forcing
We study, both theoretically and experimentally, the dynamical response of
Turing patterns to a spatio-temporal forcing in the form of a travelling wave
modulation of a control parameter. We show that from strictly spatial
resonance, it is possible to induce new, generic dynamical behaviors, including
temporally-modulated travelling waves and localized travelling soliton-like
solutions. The latter make contact with the soliton solutions of P. Coullet
Phys. Rev. Lett. {\bf 56}, 724 (1986) and provide a general framework which
includes them. The stability diagram for the different propagating modes in the
Lengyel-Epstein model is determined numerically. Direct observations of the
predicted solutions in experiments carried out with light modulations in the
photosensitive CDIMA reaction are also reported.Comment: 6 pages, 5 figure
Re-identification of c. 15 700 cal yr BP tephra bed at Kaipo Bog, eastern North Island: implications for dispersal of Rotorua and Puketarata tephra beds.
A 10 mm thick, c. 15 700 calendar yr BP (c. 13 100 14C yr BP) rhyolitic tephra bed in the well-studied montane Kaipo Bog sequence of eastern North Island was previously correlated with Maroa-derived Puketarata Tephra. We revise this correlation to Okataina-derived Rotorua Tephra based on new compositional data from biotite phenocrysts and glass. The new correlation limits the known dispersal of Puketarata Tephra (sensu stricto, c. 16 800 cal yr BP) and eliminates requirements to either reassess its age or to invoke dual Puketarata eruptive events. Our data show that Rotorua Tephra comprises two glass-shard types: an early-erupted low-K2O type that was dispersed mostly to the northwest, and a high-K2O type dispersed mostly to the south and southeast, contemporary with late-stage lava extrusion. Late-stage Rotorua eruptives contain biotite that is enriched in FeO compared with biotite from Puketarata pyroclastics. The occurrence of Rotorua Tephra in Kaipo Bog (100 km from the source) substantially extends its known distribution to the southeast. Our analyses demonstrate that unrecognised syn-eruption compositional and dispersal changes can cause errors in fingerprinting tephra deposits. However, the compositional complexity, once recognised, provides additional fingerprinting criteria, and also documents magmatic and dispersal processes
A study of blood contamination of Siqveland matrix bands
AIMS To use a sensitive forensic test to measure blood contamination of used Siqveland matrix bands following routine cleaning and sterilisation procedures in general dental practice. MATERIALS AND METHODS: Sixteen general dental practices in the West of Scotland participated. Details of instrument cleaning procedures were recorded for each practice. A total of 133 Siqveland matrix bands were recovered following cleaning and sterilisation and were examined for residual blood contamination by the Kastle-Meyer test, a well-recognised forensic technique. RESULTS: Ultrasonic baths were used for the cleaning of 62 (47%) bands and retainers and the remainder (53%) were hand scrubbed prior to autoclaving. Overall, 21% of the matrix bands and 19% of the retainers gave a positive Kastle-Meyer test, indicative of residual blood contamination, following cleaning and sterilisation. In relation to cleaning method, 34% of hand-scrubbed bands and 32% of hand-scrubbed retainers were positive for residual blood by the Kastle-Meyer test compared with 6% and 3% respectively of ultrasonically cleaned bands and retainers (P less than 0.001). CONCLUSIONS: If Siqveland matrix bands are re-processed in the assembled state, then adequate pre-sterilisation cleaning cannot be achieved reliably. Ultrasonic baths are significantly more effective than hand cleaning for these items of equipment
Statistical Entropy of Nonextremal Four-Dimensional Black Holes and U-Duality
We identify the states in string theory which are responsible for the entropy
of near-extremal rotating four-dimensional black holes in supergravity.
For black holes far from extremality (with no rotation), the Bekenstein-Hawking
entropy is exactly matched by a mysterious duality invariant extension of the
formulas derived for near-extremal black holes states.Comment: 9 pages, harvma
Particle-Based Mesoscale Hydrodynamic Techniques
Dissipative particle dynamics (DPD) and multi-particle collision (MPC)
dynamics are powerful tools to study mesoscale hydrodynamic phenomena
accompanied by thermal fluctuations. To understand the advantages of these
types of mesoscale simulation techniques in more detail, we propose new two
methods, which are intermediate between DPD and MPC -- DPD with a multibody
thermostat (DPD-MT), and MPC-Langevin dynamics (MPC-LD). The key features are
applying a Langevin thermostat to the relative velocities of pairs of particles
or multi-particle collisions, and whether or not to employ collision cells. The
viscosity of MPC-LD is derived analytically, in very good agreement with the
results of numerical simulations.Comment: 7 pages, 2 figures, 1 tabl
Macrofossils and pollen representing forests of the pre-Taupo volcanic eruption (c. 1850 yr BP) era at Pureora and Benneydale, central North Island, New Zealand.
Micro- and macrofossil data from the remains of forests overwhelmed and buried at Pureora and Benneydale during the Taupo eruption (c. 1850 conventional radiocarbon yr BP) were compared. Classification of relative abundance data separated the techniques, rather than the locations, because the two primary clusters comprised pollen and litter/wood. This indicates that the pollen:litter/wood within-site comparisons (Pureora and Benneydale are 20 km apart) are not reliable. Plant macrofossils represented mainly local vegetation, while pollen assemblages represented a combination of local and regional vegetation. However, using ranked abundance and presence/absence data, both macrofossils and pollen at Pureora and Benneydale indicated conifer/broadleaved forest, of similar forest type and species composition at each site. This suggests that the forests destroyed by the eruption were typical of mid-altitude west Taupo forests, and that either data set (pollen or macrofossils) would have been adequate for regional forest interpretation.
The representation of c. 1850 yr BP pollen from the known buried forest taxa was generally consistent with trends determined by modern comparisons between pollen and their source vegetation, but with a few exceptions.
A pollen profile from between the Mamaku Tephra (c. 7250 yr BP) and the Taupo Ignimbrite indicated that the Benneydale forest had been markedly different in species dominance compared with the forest that was destroyed during the Taupo eruption. These differences probably reflect changes in drainage, and improvements in climate and/or soil fertility over the middle Holocene
- …