261 research outputs found

    Inotropic effects of propofol, thiopental, midazolam, etomidate, and ketamine on isolated human atrial muscle

    Get PDF
    Background: Cardiovascular instability after intravenous induction of anesthesia may be explained partly by direct negative inotropic effects. The direct inotropic influence of etomidate, ketamine, midazolam, propofol, and thiopental on the contractility of isolated human atrial tissue was determined. Effective concentrations were compared with those reported clinically. Methods: Atrial tissue was obtained from 16 patients undergoing coronary bypass surgery. Each fragment was divided into three strips, and one anesthetic was tested per strip in increasing concentrations (10 -6 to 10 - 2 M). Strips were stimulated at 0.5 Hz, and maximum isometric force was measured. Induction agents were studied in two groups, group 1 (n = 7) containing thiopental, midazolam, and propofol, and group 2 (n = 9) consisting of etomidate, ketamine, and propofol. Results: The tested anesthetics caused a concentration-dependent depression of contractility resulting in complete cessation of contractions at the highest concentrations. The IC 50s (mean ± SEM; ΌM) for inhibition of the contractility were: thiopental 43 ± 7.6, propofol 235 ± 48 (group 1), and 246 ± 42 (group 2), midazolam 145 ± 54, etomidate 133 ± 13, and ketamine 303 ± 54. Conclusions: This is the first study demonstrating a concentration-dependent negative inotropic effect of intravenous anesthetics in isolated human atrial muscle. NO inhibition of myocardial contractility was found in the clinical concentration ranges of propofol, midazolam, and etomidate. In contrast, thiopental showed strong and ketamine showed slight negative inotropic properties. Thus, negative inotropic effects may explain in part the cardiovascular depression on induction of anesthesia with thiopental but not with propofol, midazolam, and etomidate. Improvement of hemodynamics after induction of anesthesia with ketamine cannot be explained by intrinsic cardiac stimulation

    Cohort profile: The Cohorts Consortium of Latin America and the Caribbean (CC-LAC)

    Get PDF
    Why was the cohort set up? Latin America and the Caribbean (LAC) are characterized by much diversity in terms of socio-economic status, ecology, environment, access to health care,1,2 as well as the frequency of risk factors for and prevalence or incidence of non-communicable diseases;3–7 importantly, these differences are observed both between and within countries in LAC.8,9 LAC countries share a large burden of non-communicable (e.g. diabetes and hypertension) and cardiovascular (e.g. ischaemic heart disease) diseases, with these conditions standing as the leading causes of morbidity, disability and mortality in most of LAC.10–12 These epidemiological estimates—e.g. morbidity—cannot inform about risk factors or risk prediction, which are relevant to identify prevention avenues. Cohort studies, on the other hand, could provide this evidence. Pooled analysis, using data from multiple cohort studies, have additional strengths such as increased statistical power and decreased statistical uncertainty.13 LAC cohort studies have been under-represented,14 or not included at all,15–17 in international efforts aimed at pooling data from multiple cohort studies. We therefore set out to pool data from LAC cohorts to address research questions that individual cohort studies would not be able to answer. Drawing from previous successful regional enterprises (e.g. Asia Pacific Cohort Studies Collaboration),18,19 we established the Cohorts Consortium of Latin America and the Caribbean (CC-LAC). The main aim of the CC-LAC is to start a collaborative cohort data pooling in LAC to examine the association between cardio-metabolic risk factors (e.g. blood pressure, glucose and lipids) and non-fatal and fatal cardiovascular outcomes (e.g. stroke or myocardial infarction). In so doing, we aim to provide regional risk estimates to inform disease burden metrics, as well as other ambitious projects including a cardiovascular risk score to strengthen cardiovascular prevention in LAC. Initial funding has been provided by a fellowship from the Wellcome Trust Centre for Global Health Research at Imperial College London (Strategic Award, Wellcome Trust–Imperial College Centre for Global Health Research, 100693/Z/12/Z). Additional funding is being provided by an International Training Fellowship from the Wellcome Trust (214185/Z/18/Z). At the time of writing, the daily operations and pooled database are hosted at Imperial College London, though a mid-term goal is to transfer this expertise and operations to LAC. The collaboration relies fundamentally on a strong regional network of health researchers and practitioner

    Effects of dietary nitrate supplementation on symptoms of acute mountain sickness and basic physiological responses in a group of male adolescents during ascent to Mount Everest Base Camp

    Get PDF
    The purpose of this study was to investigate the effects of dietary nitrate supplementation, in the form of beetroot juice, on acute mountain sickness (AMS) symptoms and physiological responses, in a group of young males trekking to Mount Everest Base Camp (EBC). Forty healthy male students (mean age (SD): 16 (1) yrs) trekked to EBC over 11 days. Following an overnight fast, each morning participants completed the Lake Louise AMS questionnaire and underwent a series of physiological tests: resting blood pressure as well as resting and exercising heart rate, respiratory rate, and peripheral oxygen saturation. The exercise test consisted of a standardised 2-minute stepping protocol and measurements were taken in the last 10 seconds. Participants in the intervention arm of the study consumed 140 ml of concentrated beetroot juice daily, containing approximately 10 mmoles of nitrate, while those in the control arm consumed 140 ml of concentrated blackcurrant cordial with negligible nitrate content. Drinks were taken for the first seven days at high altitude (days 2 to 8), in two equal doses; one with breakfast, and one with the evening meal. Mixed modelling revealed no significant between-groups difference in the incidence of AMS (Odds Rationitrate vs. control: 1.16 (95% CI: 0.59; 2.29)). Physiological changes occurring during ascent to high altitude generally were not significantly different between the two groups (Model Coef (95% CI) – average difference nitrate vs. control: systolic blood pressure, 0.16 (-4.47; 4.79); peripheral oxygen saturation, 0.28 (-0.85; 1.41); heart rate, -0.48 (-8.47; 7.50) (Model Coef (95% CI) – relative difference nitrate vs. control: ventilatory rate, 0.95 (0.82; 1.08)). Modelling revealed that diastolic blood pressure was 3.37 mmHg (0.24; 6.49) higher for participants in the beetroot juice, however this difference was no larger than that found at baseline and no interaction effect was observed. Supplementation with dietary nitrate did not significantly change symptoms of AMS or alter key physiological variables, in a group of adolescent males during a high altitude trekking expedition. There was no evidence of harm from dietary nitrate supplementation in this context. Given the wide confidence intervals in all models, a larger sample size would be required to exclude a false negative result. Our data suggest that prolonged oral nitrate supplementation is safe and feasible at altitude but has little physiological or clinical effect

    Impact of common cardio-metabolic risk factors on fatal and non-fatal cardiovascular disease in Latin America and the Caribbean: an individual-level pooled analysis of 31 cohort studies

    Get PDF
    Background: Estimates of the burden of cardio-metabolic risk factors in Latin America and the Caribbean (LAC) rely on relative risks (RRs) from non-LAC countries. Whether these RRs apply to LAC remains un- known. Methods: We pooled LAC cohorts. We estimated RRs per unit of exposure to body mass index (BMI), systolic blood pressure (SBP), fasting plasma glucose (FPG), total cholesterol (TC) and non-HDL cholesterol on fatal (31 cohorts, n = 168,287) and non-fatal (13 cohorts, n = 27,554) cardiovascular diseases, adjusting for regression dilution bias. We used these RRs and national data on mean risk factor levels to estimate the number of cardiovascular deaths attributable to non-optimal levels of each risk factor. Results: Our RRs for SBP, FPG and TC were like those observed in cohorts conducted in high-income countries; however, for BMI, our RRs were consistently smaller in people below 75 years of age. Across risk factors, we observed smaller RRs among older ages. Non-optimal SBP was responsible for the largest number of attributable cardiovascular deaths ranging from 38 per 10 0,0 0 0 women and 54 men in Peru, to 261 (Dominica, women) and 282 (Guyana, men). For non-HDL cholesterol, the lowest attributable rate was for women in Peru (21) and men in Guatemala (25), and the largest in men (158) and women (142) from Guyana. Interpretation: RRs for BMI from studies conducted in high-income countries may overestimate disease burden metrics in LAC; conversely, RRs for SBP, FPG and TC from LAC cohorts are similar to those esti- mated from cohorts in high-income countries
    • 

    corecore