1,379 research outputs found

    Bounding film drainage in common thin films

    Get PDF
    A review of thin film drainage models is presented in which the predictions of thinning velocities and drainage times are compared to reported values on foam and emulsion films found in the literature. Free standing films with tangentially immobile interfaces and suppressed electrostatic repulsion are considered, such as those studied in capillary cells. The experimental thinning velocities and drainage times of foams and emulsions are shown to be bounded by predictions from the Reynolds and the theoretical MTsR equations. The semi-empirical MTsR and the surface wave equations were the most consistently accurate with all of the films considered. These results are used in an accompanying paper to develop scaling laws that bound the critical film thickness of foam and emulsion films

    Optimal control of motorsport differentials

    Get PDF
    Modern motorsport limited slip differentials (LSD) have evolved to become highly adjustable, allowing the torque bias that they generate to be tuned in the corner entry, apex and corner exit phases of typical on-track manoeuvres. The task of finding the optimal torque bias profile under such varied vehicle conditions is complex. This paper presents a nonlinear optimal control method which is used to find the minimum time optimal torque bias profile through a lane change manoeuvre. The results are compared to traditional open and fully locked differential strategies, in addition to considering related vehicle stability and agility metrics. An investigation into how the optimal torque bias profile changes with reduced track-tyre friction is also included in the analysis. The optimal LSD profile was shown to give a performance gain over its locked differential counterpart in key areas of the manoeuvre where a quick direction change is required. The methodology proposed can be used to find both optimal passive LSD characteristics and as the basis of a semi-active LSD control algorithm

    Macromolecular interactions during gelatinisation and retrogradation in starch-whey systems as studied by rapid visco-analyser

    Get PDF
    Gelatinisation and retrogradation of starch-whey mixtures were studied in water (pH 7) using the Rapid Visco-Analyser (RVA). The starch:whey ratios ranged from 0:100 - 100:0. Wheat starch, and whey protein concentrate (about 80% solids basis) and isolate (about 96% solids basis) were used. Mixtures with whey isolates were generally more viscous than those with whey concentrates, and this was attributed to fewer non-protein milk components in the former. Whey protein concentrates and isolates reduced the peak, trough and final viscosities of the mixtures, but the breakdown and setback ratios of the mixtures were increased. The gelatinisation temperature increased with whey substitutions indicating that whey protein delayed starch gelatinisation. The temperature of fastest viscosity development decreased as the amount of whey was increased. Whey protein isolate generally exercised a lesser effect than the concentrate. At between 40 - 50% whey substitutions, the dominant phase changed from starch to protein irrespective of the source of the whey protein. An additive law poorly defined selected RVA parameters. Both macromolecules interacted to define the viscosity of the mixture, and an exponential model predicted the viscosity better than the additive law. The results obtained in this study are discussed to assist the understanding of extrusion processing of starch-whey systems as models for whey-fortified snack and ready-to-eat foods. Copyright ©2006 The Berkeley Electronic Press. All rights reserved

    Ordering intermetallic alloys by ion irradiation: a way to tailor magnetic media

    Full text link
    Combining He ion irradiation and thermal mobility below 600K, we both trigger and control the transformation from chemical disorder to order in thin films of an intermetallic ferromagnet (FePd). Kinetic Monte Carlo simulations show how the initial directional short range order determines order propagation. Magnetic ordering perpendicular to the film plane was achieved, promoting the initially weak magnetic anisotropy to the highest values known for FePd films. This post-growth treatment should find applications in ultrahigh density magnetic recording.Comment: 7 pages, 3 Figure

    Residual Symmetries in the Spectrum of Periodically Driven Alkali Rydberg States

    Full text link
    We identify a fundamental structure in the spectrum of microwave driven alkali Rydberg states, which highlights the remnants of the Coulomb symmetry in the presence of a non-hydrogenic core. Core-induced corrections with respect to the hydrogen spectrum can be accounted for by a perturbative approach.Comment: 7 pages, 2 figures, to be published in Europhysics Letter

    Energy Level Statistics of Quantum Dots

    Full text link
    We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner- Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime. These regimes are as expected from previous studies and fundamental considerations, but we also find interesting and rather broad crossover regimes. In particular, intermediate between the Gaussian and Poisson regimes we find a two-sided exponential distribution for the energy level spacings. In comparing with experiment, we find that this distribution may be realized in some quantum dots.Comment: 21 pages 10 figure

    Nanostructured rigid polyurethane foams with improved specific thermo-mechanical properties using Bacterial Nanocellulose as a Hard Segment

    Full text link
    Bacterial nanocellulose (BNC) was used to synthesize rigid polyurethane foams (RPUFs) based on its reaction with the isocyanate precursor (ISO route) and also by using the conventional procedure (POL route). The results indicated that at only 0.1 wt. % of BNC, drastic improvements of specific elastic compressive modulus (+244.2 %) and strength (+77.5 %) were found. The reaction of BNC with the precursor was corroborated through the measurement of isocyanate number and the BNC caused a significant nucleation effect, decreasing the cell size up to 39.7%. DSC analysis revealed that the BNC had a strong effect on post-cure enthalpy, decreasing its value when the ISO route was implemented. DMA analysis revealed that the RPUFs developed using the ISO route proved to have an improved damping factor, regardless of BNC concentration. These results emphasize the importance of using the ISO route to achieve foamed nanocomposites with improved specific mechanical properties

    Transnational reflections on transnational research projects on men, boys and gender relations

    Get PDF
    This article reflects on the research project, ‘Engaging South African and Finnish youth towards new traditions of non-violence, equality and social well-being’, funded by the Finnish and South African national research councils, in the context of wider debates on research, projects and transnational processes. The project is located within a broader analysis of research projects and projectization (the reduction of research to separate projects), and the increasing tendencies for research to be framed within and as projects, with their own specific temporal and organizational characteristics. This approach is developed further in terms of different understandings of research across borders: international, comparative, multinational and transnational. Special attention is given to differences between research projects that are in the Europe and the EU, and projects that are between the global North and the global South. The theoretical, political and practical challenges of the North-South research project are discussed

    Potential for improvement of population diet through reformulation of commonly eaten foods

    Get PDF
    Food reformulation: Reformulation of foods is considered one of the key options to achieve population nutrient goals. The compositions of many foods are modified to assist the consumer bring his or her daily diet more in line with dietary recommendations. Initiatives on food reformulation: Over the past few years the number of reformulated foods introduced on the European market has increased enormously and it is expected that this trend will continue for the coming years. Limits to food reformulation: Limitations to food reformulation in terms of choice of foods appropriate for reformulation and level of feasible reformulation relate mainly to consumer acceptance, safety aspects, technological challenges and food legislation. Impact on key nutrient intake and health: The potential impact of reformulated foods on key nutrient intake and health is obvious. Evaluation of the actual impact requires not only regular food consumption surveys, but also regular updates of the food composition table including the compositions of newly launched reformulated foods
    • 

    corecore