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Abstract 

A review of thin film drainage models is presented in which the predictions of thinning 

velocities and drainage times are compared to reported values on foam and emulsion films 

found in the literature. Free standing films with tangentially immobile interfaces and 

suppressed electrostatic repulsion are considered, such as those studied in capillary cells. 

The experimental thinning velocities and drainage times of foams and emulsions are 

shown to be bounded by predictions from the Reynolds and the theoretical MTsR 

equations. The semi-empirical MTsR and the surface wave equations were the most 

consistently accurate with all of the films considered. These results are used in an 

accompanying paper to develop scaling laws that bound the critical film thickness of foam 

and emulsion films. 
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1. Introduction  

Thin liquid films form between the discrete phases in multiphase systems (e.g., bubbles 

and droplets) and an improved understanding of their stability will benefit numerous 

industries relying on foam and emulsion products [1]. Several exciting applications loom 

on the horizon in the area of nanoscale multiphase materials, such as designed-

nanostructure foams for tissue engineered constructs and soft biomedical scaffolds [2], 

novel market-inspired foam structures for manufactured food products and emulsions [3], 

and carefully designed foams for rigid structural applications in aerospace design [4]. In 

order to ensure that new nanoscale foam structures can be manufactured to meet the needs 

of the expanding variety of applications, more attention must be directed at the 

fundamentals of the foaming process – that is, concentrating on the basics behind thin film 

drainage and cell rupture mechanisms. Specifically we hope this work and the 

accompanying paper [5] provides a paradigm shift in the ease of prediction of the drainage 

and rupture of thin films. By bounding the complex dynamics in thin films, we begin to 

construct a framework from which insights can be made into the design of the ultimate 

structure and properties of market-ready nanostructured foams.  

 

In the context of manufacturing a multiphase material with specific structural 

requirements, the eventual physical state of the continuous phase (e.g., the thin film) is 

highly influenced by the thin film drainage behavior. Despite the existence of a large body 

of information on the drainage of thin films, significant uncertainties remain in the ability 

to predict thinning velocities using basic physicochemical properties. Thin films drain as a 

consequence of the pressure drop between the film interior and the Plateau border at its 

perimeter [1, 6]. As the film thickness decreases, the intrafilm pressure increases and the 

flexible interfaces deform. At smaller film thicknesses, the interfaces become more 

corrugated and form dimples and pimples. The process in which unstable capillary waves 

on these interfaces become unstable and rupture the film is described in an accompanying 

paper [5].  Film drainage plays an important role in creating the conditions required to 

either maintain a stable, continuous film or create instabilities that lead to the formation of 

holes or film openings.  
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Thin film dynamics are studied in specially designed capillary cells [1]. The Scheludko 

cell [7] was one of the original experimental systems designed to study thin liquid films. A 

thin film is created in the following manner. The film medium is injected into the capillary 

tube until a column of liquid is obtained with concave menisci. The film medium is then 

removed until the menisci begin to flatten. Once the desired film radius is achieved, the 

thin film is allowed to drain spontaneously. Interference patterns of monochromatic light 

reflecting and transmitting through the thin film allow precise measurement of the film 

thickness. By surrounding the film with a gas or immiscible liquid, both foam [8-10] and 

emulsion films [9, 11] can be studied. In this paper, the thinning velocities and drainage 

times of thin films predicted from various drainage models are compared to experimental 

measurements reported in the literature. Data was selected from studies in which 

precautions were taken to eliminate the tangential mobility and electrostatic repulsion of 

the film interfaces. This was achieved by including a surfactant at or above the critical 

micelle concentration and a small amount of electrolyte in the film medium. The objective 

of this analysis is to determine if existing drainage theories accurately predict thinning 

velocities and drainage times of ideal films whose physicochemical properties are well 

known. By identifying theories that accurately predict or bound film drainage, it is possible 

to determine whether the conditions that lead to instability [6] and rupture [5] can be 

bounded.  

 

2. Film Drainage Theory 

The hydrodynamics of thin films with rigid interfaces was addressed by Reynolds [12]. 

Figure 1 shows a plane parallel film surrounded by a Plateau border. Application of the 

lubrication approximation to the Navier-Stokes equation for cylindrical thin films leads to 

the following Reynolds equation [6, 7, 12] for film thinning.   

 
3

Re 2

2
3

dh h P
V

dt R
∆

µ
= − =  (1) 

h is the average film thickness, P∆  is the drainage pressure or average pressure drop 

across the film, R is the radius, t is time, VRe is the (Reynolds) thinning velocity, and µ  is 

the film viscosity. Drainage of the film occurs when the pressure within the film exceeds 
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that in the Plateau border. When electrostatic repulsion between the film interfaces is 

suppressed, the drainage pressure in the film has the following two components.  

 ( ) 32 2
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c
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hR R
σ∆

π
= +

−
 (2) 

The first term on the right hand side is the capillary pressure drop due to the interfacial 

curvature in the Plateau border, which is the curvature of the adjacent bubble or drop 

menisci as affected by the presence of the film. The second term accounts for the increase 

in film pressure due to the attractive van der Waals forces acting between the film 

interfaces and is described as a negative disjoining pressure. In equation (2), A is the 

Hamaker constant, Rc is the radius of the capillary tube, and σ is the interfacial tension. 

The Hamaker constant is dependent on the materials that comprise a given film system as 

well as the film thickness [13]. In the following section, the equation described by Russel 

et al [13] is used to provide estimates of the Hamaker constant.  

 

It has previously been shown that thin films generally exhibit faster thinning velocities 

than that predicted by the Reynolds equation [8, 14]. The discrepancy has been attributed 

to a number of factors including finite tangential mobility [15, 16], changes to the van der 

Waals interactions and Hamaker constant [17], the non-parallel nature of the flexible 

interfaces [8, 18, 19], and dynamic surface waves [20]. Attempts have been made to limit 

the experimental data used in this study to film systems with tangentially immobile 

interfaces and with known physicochemical properties. Therefore, the potential sources of 

enhanced thinning velocities considered here are limited to non-parallel interfacial 

features.  

 

The drainage theory of Manev et al [18, 19] proposes that the intrafilm pressure increases 

due to the presence of hydrodynamic corrugations. Starting from a local form of the 

lubrication equation, Manev et al assumed that the local film thickness is a homogeneous 

function of the average film thickness, that the waveform driving the drainage develops by 

intrafilm capillary forces, and that the pressure drop across the film is proportional to the 

drainage pressure divided by the square root of the eigenvalue of the dominant waveform. 

These assumptions lead to the following expression for thinning velocity. 
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 3 2
ReV V l=  (3) 

l is the number of domains or rings in the film and is given by the following theoretical 

expression. 

 

2 52

1
4

P R
l

h
∆
σ

� �� �= ≥� �� �
	 
� �� �

 (4) 

Equations (3) and (4) are referred to here as the theoretical MTsR equation. Coons et al [6] 

compared the thinning velocities predicted by the theoretical MTsR equation to the 

experimental measurements of Radoev et al [8] and determined that the predicted 

velocities were consistently higher than the experimental measurements. By plotting the 

velocity ratio [i.e., ( )2 3

Measured ReV V ] against the theoretical number of domains from 

equation (4), the following semi-empirical expression for l was obtained. 
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Equations (3) and (5) are referred to here as the semi-empirical MTsR equation. Equations 

(4) and (5) indicate that thick films drain in accordance with the Reynolds equation down 

to a specific film thickness. The point of departure can be referred to as the Reynolds film 

thickness [6]. As the film thickness decreases below the Reynolds thickness, the number of 

domains increases above unity and the thinning velocity exceeds that predicted by the 

Reynolds equation. A comparison of equations (4) and (5) reveals that the semi-empirical 

equation for l provides a slightly larger Reynolds thickness than the purely theoretical 

form. Also, the number of domains given by the semi-empirical equation is less than that 

given by the theoretical equation when the theoretical number of domains exceeds 4/3. As 

this crossover point is often exceeded, the semi-empirical MTsR equation generally 

provides lower thinning velocities than the theoretical MTsR equation.  

 

The drainage models described thus far were developed under the assumption that 

hydrodynamic corrugations are static waves superimposed onto a plane parallel interface. 

Ruckenstein and Sharma [20] hypothesized that hydrodynamic corrugations traverse the 



 6 

film laterally and induce a pumping action. The following surface wave equation was 

derived to predict the effect of the hypothetical pumping on the film thinning velocity. 

 
2

1 7.35Re

R
V V

R hε

ε� �� �� �= +� �� �� �
	 
� �	 
� �

 (6) 

ε  is the amplitude of the hydrodynamic corrugations on a single interface and Rε  is the 

film radius at which ε  becomes negligible, which is not generally known or reported in 

experimental studies. Radoev et al [8] observed that ε  is independent of film thickness and 

a strong function of film radius. Sharma and Ruckenstein [21] provide a simple equation to 

estimate ε  based on the film radius, but this is only applicable for the film systems studied 

by Radoev et al. Tsekov [19] derived a film thickness dependent expression for ε , but did 

not identify a non-arbitrary reference thickness to determine the exact form of the 

dependency. Coons et al [6] explored the dependency of ε  at the lower limit of the 

maximum transition thickness, which is a non-ambiguous reference thickness, and 

determined the following correlation.    

 
*

0
*

75.9
8.57

B
B

ζε =
+

 (7) 

*B is a dimensionless number that is dependent on the fundamental physicochemical 

properties of the film (see reference [6] for the method of calculation). In this study, 

equation (7) was also used to estimate Rε  after setting ε  equal to 0ζ , the initial amplitude 

of the thermal corrugation estimated from the following expression [8].  

 0 Bk Tζ σ=  (8) 

Bk  is Boltzmann’s constant (1.38054×10-23 Nm/°K) and T is absolute temperature. Rε  was 

found to be a function of two dimensionless parameters, *A  and *Pε . Over the * *,A Pε� �� � 

range of interest [0.1-10, 102-1018], Rε  is given by the following scaling law.   
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0,1α  has a value of 2.4048 and is the first root of the Bessel function of first kind order 

zero. Equation (9) allows Rε  to be estimated from the temperature, interfacial tension, 

Hamaker constant, and radius of the capillary tube. Radoev et al extrapolated their ε  

measurements to estimate Rε  as 50 µm. Using the properties shown in Table 1, equation 

(9) provides Rε  values less than 26 µm.  Having described the drainage models and their 

dependencies, the method used to estimate the Hamaker constant is presented next. �

 

3. Hamaker Constant Approximation 

The drainage theories described in the previous section are dependent on the Hamaker 

constant, which in turn is dependent on the dielectric spectrum of the materials in the 

specific film system as well as the film thickness. For all of the films used in this review, 

equation 5.9.3 in Russel et al [13] was used to estimate the Hamaker constant.  
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�
 (12) 

The subscript on the Hamaker constant is absent in the previous section and denotes a film 

of material 3 with semi-infinite material 1 at each interface. c is the speed of light 

(2.9979×108 m/s), h is the average film thickness of material 3, �  is Planck’s constant 

(1.0545×10-34 Nms/radian), in is the refractive index in the visible frequency range of 

material i, ( )0iε  is the static dielectric constant of material i, and 3ω  is the dominant 

relaxation frequency (rad/s) of material 3 in the ultraviolet frequency range. The material 

specific properties are dependent on temperature. The refractive index is also dependent on 

the wavelength in the visible range. Hough and White [22] describe a method employing a 

Cauchy plot in which the refractive index through the visible range is used to determine the 

appropriate relaxation frequency and refractive index for a given material. This method 

was employed to obtain n and ω  when values could not be found in the literature. 
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When the film material is highly polar (e.g., water), electrolytes are added to suppress the 

electrostatic repulsion that develops between the interfaces. The presence of ions in the 

film material effectively screens out the nonretarded term (i.e., the first term on the right 

hand side in equation (12)) when the film thickness is a few times larger than the Debye 

screening length [23]. The screening effect was applied when electrolytes were present in 

material 3 (i.e., the film material) by multiplying the nonretarded term by the following 

expression.  

 ( ) 22 e hh κκ −  (13) 

κ  is the inverse of the Debye screening length, which for aqueous films containing +1 and 

-1 charged electrolytes (e.g., NaCl) was estimated from the following expression [23]. 

 
1 21 2
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298.15
3.04 10
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T
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� �
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�

 (14) 

Msalt is the molar salt concentration and κ  has a unit of meter-1. A more thorough 

description of equations (12) and (13) can be found in Russel et al [13] and Israelachvili 

[23], respectively.  

 

The dielectric and optical properties used to calculate the Hamaker constants, and when 

available their temperature dependencies, are provided in Table 2. Ion concentrations and 

the Hamaker constants used to predict thinning velocities are provided in Table 1. Having 

presented the drainage theories, the required physicochemical properties, and the methods 

used to estimate the various constants, it is now possible to compare model predictions 

with the experimental measurements reported in the literature 

 

4. Results and Discussion 

Thinning velocities have been reported in very few thin film studies. Radoev et al [8] 

reported thinning velocities in aqueous foam films at specified minimum film thicknesses, 

where the minimum film thickness is defined as: 

 2min avgh h ε= −  (15) 

ε is the amplitude of the hydrodynamic corrugations. In order to predict thinning velocities, 

the average film thickness for each film was estimated using the amplitude correlation 
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provided by Sharma and Ruckenstein [21] in equation (15). The average thinning velocity 

amongst films of identical radius was calculated and compared to the average of the 

experimentally measured thinning velocities in Figure 3. None of the film drainage models 

consistently predict accurate velocities over the entire range of radii. The most accurate 

thinning velocities for films of radius 100 microns or less are provided by the semi-

empirical MTsR equation and the surface wave equation. The accuracy of the semi-

empirical MTsR equation is not coincidental as the equation parameters were obtained 

from a least square fit to this data [6]. For films with radii between 100 and 200 microns, 

the accuracy of the theoretical MTsR equation is comparable to that of the semi-empirical 

MTsR and surface wave equations. For larger films, the semi-empirical MTsR equation 

provides the most accurate thinning velocities. The measured velocities are consistently 

larger than the predictions of the Reynolds equation and smaller than the predictions of the 

theoretical MTsR equation, the latter providing about twice that of the measured velocities.     

 

Rao et al [15] reported thinning velocities for aqueous foam films of similar size, but the 

velocities are several orders of magnitude higher than those reported by Radoev et al [8]. 

For a film of radius 90 microns, Rao et al report thinning velocities between 2000 and 

5000 Å/sec at a film thickness of 400 Å and Radoev et al report a thinning velocity of 7.1 

Å/sec at a film thickness of 294 Å. Using the film thickness and drainage pressure 

dependency of the Reynolds equation to adjust the thinning velocity of Radoev et al to 400 

Å results in an estimated 8.7 Å/sec, which is still orders of magnitude lower than the range 

reported by Rao et al. A discrepancy of this magnitude can only be explained by a 

reporting error in the data of Rao et al. Therefore, the thinning velocities of Rao et al are 

not considered further. 

 

As a consequence of the rarity of thinning velocity measurements reported in the literature, 

film drainage times were also collected. Theoretical drainage times were calculated by 

integrating between the stipulated initial and final film thickness according to the 

following equation: 

 
high

low

h

h

dh
t

V
∆ = �  (16) 
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V is given by equations (1), (3), or (6), highh  is the average film thickness at the initial 

condition, and lowh  is the average film thickness at the final condition. Integration of 

equation (16) was performed numerically using the DQDAG subroutine from the IMSL 

library, while incorporating the film thickness dependency of the Hamaker constant. 

However, it was determined that carefully fixing the value of the Hamaker constant 

throughout the integration also provided accurate drainage times. This is due to the 

relatively low contribution of the disjoining pressure over the thickness range considered. 

As shown by the dashed curves in Figure 2, the disjoining pressure component does not 

contribute significantly to the drainage pressure until approximately 500 Å, which is near 

the lower film thickness limit of the drainage time integral. By fixing the Hamaker 

constant to the value at the lower thickness limit, the resulting drainage times were found 

to be accurate to within one percent, except for those determined from the surface wave 

model. In the latter case, the Hamaker constant plays a somewhat larger role in 

determining the deviation from Reynolds flow. Consequently, drainage times determined 

from the surface wave model with a fixed (larger) Hamaker constant were 5 to 20% lower, 

with the largest effect obtained for the large radii films. Although not shown here, the 

drainage times calculated with the fixed Hamaker constant were generally closer to the 

measured value. For this reason, the Hamaker constant shown in Table 1 is the value 

corresponding to the Hamaker constant at the lower thickness limit of the drainage time 

integral.  

 

Manev et al [9] and Kumar et al [10] reported drainage times for aqueous foam films. 

Manev et al measured drainage times as a function of surfactant and electrolyte 

concentration as the films thinned from 2000 to 500 Å in thickness. The ratio of theoretical 

to experimental drainage times are compared in Figure 4, plots (a) through (d). The semi-

empirical MTsR and surface wave equations are most accurate with foam films of radius 

greater than 100 µm, whereas the Reynolds equation is most accurate for smaller films. 

Drainage times determined from the theoretical MTsR equation are typically about half of 

the measured value. Drainage times for the plane-parallel film of Kumar et al are presented 

in Table 3, where the theoretical and semi-empirical MTsR equations are shown to be most 
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accurate. The drainage times for all of the foam films measured by Manev et al and Kumar 

et al are bounded by the Reynolds equation and the theoretical MTsR equation.�

 

Drainage times of emulsion films were measured by Traykov et al [11] and Manev et al 

[9]. Drainage times reported by Traykov et al for films of 100 µm radius are compared to 

the predictions from theory in Table 3 and those of Manev et al are compared in Figure 4, 

plots (e) and (f). As with the foam films, the semi-empirical MTsR and the surface wave 

equations provide the most accurate predictions of drainage times, particularly for 

emulsion films with a radius greater than 100 µm. The Reynolds and surface wave 

equations are more accurate for emulsion films of radii smaller than 100 µm. Drainage 

times determined from the theoretical MTsR equation are typically about half of the 

measured value. The drainage times measured by Traykov et al and Manev et al are 

bounded by the Reynolds and the theoretical MTsR equations. 

 

5. Conclusions 

An analysis of film drainage is provided in which thinning velocities and drainage times 

predicted by existing drainage theories are compared to reported measurements from foam 

and emulsion thin film experiments. Approximate correlations for previously undefined 

model parameters (i.e., the amplitude of the hydrodynamic corrugations and the film radius 

at which the amplitudes become significant) are provided as functions of fundamental film 

properties. The thinning velocity and drainage times of all of the foam and emulsion films 

were bounded by the Reynolds equation and the theoretical MTsR equation. The Reynolds 

equation was typically the most accurate predictor of drainage times of all films less than 

100 µm in radius, whereas the semi-empirical MTsR equation provided the most accurate 

drainage times over the entire span of film sizes. Accuracy of the semi-empirical MTsR 

equation with the data of Radoev et al is expected as the model parameters were obtained 

by a fit to the data [6]. Thinning velocities predicted by the theoretical MTsR equation 

were generally about twice as large as the measured value, resulting in drainage times that 

were about half of the measured values. These results are used in an accompanying paper 

[5] to develop scaling laws that bound the critical rupture thickness of foam and emulsion 

films. 
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 Tables 
 
Table 1. Physicochemical Properties of the Film Systems. ����

 
Reference 

Film 
Type 

A×1020 
(Nm)����

ΤΤΤΤ  
(˚C)����

σσσσ ×103 
(N/m) 

µµµµ ×103 
(Ns/m) 

Rc   
(µµµµm) 

R  
(µµµµm) 

hhigh-hlow 
(Å) 

 
Radoev et al [8] 

 
Foam1 

" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
 

 
1.41 
1.36 
1.29 
1.26 
1.30 
1.26 
1.23 
1.17 
1.13 
1.13 
0.97 
0.79 
0.75 
0.68 

 
24 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
 

 
34.5 

" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
 

 
0.89 

" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
 

 
17902 

" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
 

 
50 
60 
65 
70 
75 
80 
90 

100 
115 
150 
200 
500 
700 

1000 

 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

 
Manev et al [9] 

No. 1 
No. 2 
No. 3 
No. 4 
No. 5 
No. 6 

 
 

Foam3 
Foam4 

" 
" 

Emulsion5 
Emulsion6 

 
 

0.79 
" 
" 
" 

0.12 
" 

 
 

25 
" 
" 
" 
" 
" 

 
 

44.5 
37.0 
34.0 
34.0 
15.0 
7.9 

 
 

0.89 
" 
" 
" 
" 
" 

 
 

1790 
" 
" 
" 

1580 
" 

 
 

50-500 
" 
" 
" 

50-300 
" 

 
 

2000-500 
" 
" 
" 
" 
" 

 
Traykov et al [11] 

No. 1 
No. 4 

 
 

Emulsion7 
Emulsion8 

 
 

0.36 
0.10 

 
 

20 
" 

 
 

28.0 
34.0 

 
 

1.0 
" 

 
 

1350 
1450 

 
 

100 
" 

 
 

1600-840 
" 
 

 
Kumar et al [10] 

 
Foam 

 
0.41 

 
25 

 
37.1 

 
0.89 

 
930 

 
178 

 
4000-1020 

 
 

                                                 
1 Aqueous films contained 0.1M NaCl. 
2 Not reported in reference but estimated from the reported capillary pressure drop. 
3 Aqueous films contained 0.1M NaCl.  
4 Aqueous films contained 0.25M NaCl. 
5 Toluene in water (o/w) emulsion. The aqueous films contained 0.3M NaCl..  
6 Toluene in water (o/w) emulsion. The aqueous films contained 0.1M NaCl. 
7 Water in benzene (w/o) emulsion. 
8 Benzene in water (o/w).emulsion. The aqueous films contained 0.3M NaCl. 



 15 

 
 

Table 2. Dielectric and optical properties9 of reference film materials. 

Material εεεε(0) n ωωωω    ×10−16 
(rad/s) 

water ( ) ( )100.002 298.15 log 78.5410 T− − +  1.333 1.88 

air 1.00054 1 - 

benzene ( )2.284 .002 293.15T− −  1.5011 1.32 

toluene ( )2.379 .00243 298.15T− −  1.474 1.36 

                                                 
9 ( )0ε were obtained from Weast [24]. n  and ω  for water and benzene were obtained from Israelachvili 

[23]. n  and ω  for toluene were obtained from a Cauchy plot prepared using the refractive index data 
reported by Debenham and Dew [25].    
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Table 3. Experimental and Theoretical Drainage Times of Thin Films 

∆∆∆∆ttheory (s)  
 

Reference 

 
 

Film 
Type 

    
    

∆∆∆∆texp 
(s) 

 
Reynolds 
Equation 

Semi-
Empirical 

MTsR 

 
Theoretical 

MTsR 

Surface 
Wave 

Equation 
 

Kumar et al [10] 
 

Foam 
 

4.0 
 

23.0 
 

5.6 
 

3.1 
 

6.5 
 

 
Traykov et al [11] 

 
Emulsions 

No. 1 
No. 4 

 
 

10.8 
8.9 

 
 

18.4 
16.3 

 
 

7.3 
6.7 

 
 

5.1 
4.7 

 
 

10.6 
12.6 

 
�
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Figure Captions 
 
Figure 1.  The formation and drainage of a free-standing thin film in a capillary cell. Deviations from 
the ideal plane-parallel interfaces include large scale hydrodynamic corrugations such as the dimples 
that have formed in the film on the far right. 

 

Figure 2. Calculated Hamaker constants over the film thickness range of interest are provided by the 
solid curves for: (a) air-water-air foam films of Radoev et al [8], Manev et al [9] (Nos. 1 through 4), and 
Kumar et al [10], (b) toluene-water-toluene emulsion (O/W) films of Manev et al [9] (Nos. 5 and 6), (c) 
water-benzene-water emulsion (W/O) films of Traykov et al [11] (No. 1), and (d) benzene-water-
benzene emulsion (O/W) films of Traykov et al [11] (No. 4). The dashed curves provide the ratio of the 
disjoining pressure to the Plateau border pressure drop that make up the film drainage pressure. 

 

Figure 3.  The ratio of theoretical to measured drainage velocity for the films of Radoev et al [8].  All 
experimental measurements are bounded by the Reynolds equation and the theoretical MTsR 
equation. Theoretical results are indicated for the Reynolds equation (�), the semi-empirical MTsR 
equation (�), theoretical MTsR equation (�), and the surface wave equation (×). 

 

Figure 4.  The ratio of theoretical to measured drainage times for the films of Manev et al [9]. Plots (a) 
through (d) refer to foam films Nos. 1 through 4, respectively. Plots (e) and (f) refer to emulsion films 
Nos. 5 and 6, respectively. Theoretical results are indicated for the Reynolds equation (�), the semi-
empirical MTsR equation (�), theoretical MTsR equation (�), and the surface wave equation (×).. 
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Figure 2. 
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Figure 4.  
 
�

0.1

1

10

0 200 400 600

R  (µµµµm)

∆∆ ∆∆
t th

eo
ry

/ ∆∆ ∆∆
t e

xp

0.1

1

10

0 200 400 600

∆∆ ∆∆t
th

eo
ry

 / ∆∆ ∆∆
t ex

p

0.1

1

10

100

0 200 400 600

∆∆ ∆∆t
th

eo
ry

 / ∆∆ ∆∆
t ex

p

0.1

1

10

100

0 200 400 600

R  (µµµµm)

∆∆ ∆∆
t th

eo
ry

 /
∆∆ ∆∆

t ex
p

0.1

1

10

100

0 200 400 600

∆∆ ∆∆t
th

eo
ry

 / ∆∆ ∆∆
t ex

p

0.1

1

10

100

0 200 400 600

∆∆ ∆∆
t th

eo
ry

 / ∆∆ ∆∆
t ex

p

(a)

(b)

(c) (f)

(e)

(d)


