602 research outputs found

    Individual variation in age‐dependent reproduction: Fast explorers live fast but senesce young?

    Get PDF
    Adaptive integration of life history and behaviour is expected to result in variation in the pace‐of‐life. Previous work focused on whether ‘risky’ phenotypes live fast but die young, but reported conflicting support. We posit that individuals exhibiting risky phenotypes may alternatively invest heavily in early‐life reproduction but consequently suffer greater reproductive senescence. We used a 7‐year longitudinal dataset with >1,200 breeding records of >800 female great tits assayed annually for exploratory behaviour to test whether within‐individual age dependency of reproduction varied with exploratory behaviour. We controlled for biasing effects of selective (dis)appearance and within‐individual behavioural plasticity. Slower and faster explorers produced moderate‐sized clutches when young; faster explorers subsequently showed an increase in clutch size that diminished with age (with moderate support for declines when old), whereas slower explorers produced moderate‐sized clutches throughout their lives. There was some evidence that the same pattern characterized annual fledgling success, if so, unpredictable environmental effects diluted personality‐related differences in this downstream reproductive trait. Support for age‐related selective appearance was apparent, but only when failing to appreciate within‐individual plasticity in reproduction and behaviour. Our study identifies within‐individual age‐dependent reproduction, and reproductive senescence, as key components of life‐history strategies that vary between individuals differing in risky behaviour. Future research should thus incorporate age‐dependent reproduction in pace‐of‐life studies

    Acid rain and eggshells

    Full text link

    Variability in basal metabolic rate of a long-distance migrant shorebird (Red Knot, <i>Calidris canutus</i>) reflects shifts in organ sizes

    Get PDF
    We studied differences in body composition and basal metabolic rate (BMR, measured in postabsorptive birds under thermoneutral conditions at night) in two subspecies of red knots, Calidris canutus: one that spends the nonbreeding season under energetically costly climatic conditions at temperate latitudes (subspecies islandica in western Europe) and one that winters in the hot and humid tropics (subspecies canutus in West and South Africa). To examine whether the possible differences would be upheld under identical conditions, we kept both groups in captivity as well. Body composition was quantified with respect to the fat and lean components of 10 ''organs'' (breast muscles, leg muscles, stomach, intestine, liver kidneys, lungs, heart, and the skin, and skeleton and attached muscle). Captive birds had lighter lean tissues than wild birds, especially those of the stomach, intestine, kidneys, and liver (the nutritional organs). During the northern winter wild islandica knots had higher lean masses than canutus knots in tropical Africa. Tropically wintering red knots had lower BMRs than their temperate-wintering conspecifics, and birds in long-term captivity had lower BMR values than their free-living counterparts. Average BMR values per category of birds (wild or captive of either subspecies) were strongly correlated with the group averages of lean mass. Prediction of BMR on the basis of total lean mass of red knots undergoing incipient starvation follows this same relationship because metabolically active tissue is being depleted. That the two subspecies converged to similar body composition in captivity indicates that individual red knots may possess considerable flexibility. We argue that red knots, and probably most other long-distance migrants, have metabolic machinery that is able to adjust continuously, depending on the ecological conditions and food types encountered in the course of the year. We further argue that variation in (functional components of) lean mass is the vehicle for seasonal adjustments in metabolic physiology to variable demand levels. Body mass adjustments offer a flexible response enabling red knots to economize on total daily metabolic expenditure whenever conditions allow a relaxation of metabolic scope, such as during winter in the Tropics.</p

    A recipe for postfledging survival in great tits Parus major: be large and be early (but not too much)

    Get PDF
    Survival of juveniles during the postfledging period can be markedly low, which may have major consequences on avian population dynamics. Knowing which factors operating during the nesting phase affect postfledging survival is crucial to understand avian breeding strategies. We aimed to obtain a robust set of predictors of postfledging local survival using the great tit (Parus major) as a model species. We used mark–recapture models to analyze the effect of hatching date, temperatures experienced during the nestling period, fledging size and body mass on first-year postfledging survival probability of great tit juveniles. We used data from 5192 nestlings of first clutches ringed between 1993 and 2010. Mean first-year postfledging survival probability was 15.2%, and it was lower for smaller individuals, as well as for those born in either very early or late broods. Our results stress the importance of choosing an optimum hatching period, and raising large chicks to increase first-year local survival probability in the studied population.Secretaría de Estado de Investigación, Desarrollo e Innovación (Grant/Award Number: ‘CGL2013-48001-C2-1-P’)Peer reviewe

    Exercise capacity, muscle strength and fatigue in sarcoidosis

    Get PDF
    ABSTRACT: The aim of this case-control study was to investigate the prevalence of exercise intolerance, muscle weakness and fatigue in sarcoidosis patients. Additionally, we evaluated whether fatigue can be explained by exercise capacity, muscle strength or other clinical characteristics (lung function tests, radiographic stages, prednisone usage and inflammatory markers). 124 sarcoidosis patients (80 males) referred to the Maastricht University Medical Centre (Maastricht, the Netherlands) were included (mean age 46.6¡10.2 yrs). Patients performed a 6-min walk test (6MWT) and handgrip force (HGF), elbow flexor muscle strength (EFMS), quadriceps peak torque (QPT) and hamstring peak torque (HPT) tests. Maximal inspiratory pressure (PI,max) was recorded. All patients completed the Fatigue Assessment Scale (FAS) questionnaire. The 6MWT was reduced in 45% of the population, while HGF, EFMS, QPT and HPT muscle strength were reduced in 15, 12, 27 and 18%, respectively. PI,max was reduced in 43% of the population. The majority of the patients (81%) reported fatigue (FAS o22). Patients with reduced peripheral muscle strength of the upper and/or lower extremities were more fatigued and demonstrated impaired lung functions, fat-free mass, PI,max, 6MWT and quality of life. Fatigue was neither predicted by exercise capacity, nor by muscle strength. Besides fatigue, exercise intolerance and muscle weakness are frequent problems in sarcoidosis. We therefore recommend physical tests in the multidisciplinary management of sarcoidosis patients, even in nonfatigued patients

    Contrasting consequences of climate change for migratory geese:Predation, density dependence and carryover effects offset benefits of high-arctic warming

    Get PDF
    Climate change is most rapid in the Arctic, posing both benefits and challenges for migratory herbivores. However, population-dynamic responses to climate change are generally difficult to predict, due to concurrent changes in other trophic levels. Migratory species are also exposed to contrasting climate trends and density regimes over the annual cycle. Thus, determining how climate change impacts their population dynamics requires an understanding of how weather directly or indirectly (through trophic interactions and carryover effects) affects reproduction and survival across migratory stages, while accounting for density dependence. Here, we analyse the overall implications of climate change for a local non-hunted population of high-arctic Svalbard barnacle geese, Branta leucopsis, using 28 years of individual-based data. By identifying the main drivers of reproductive stages (egg production, hatching and fledging) and age-specific survival rates, we quantify their impact on population growth. Recent climate change in Svalbard enhanced egg production and hatching success through positive effects of advanced spring onset (snow melt) and warmer summers (i.e. earlier vegetation green-up) respectively. Contrastingly, there was a strong temporal decline in fledging probability due to increased local abundance of the Arctic fox, the main predator. While weather during the non-breeding season influenced geese through a positive effect of temperature (UK wintering grounds) on adult survival and a positive carryover effect of rainfall (spring stopover site in Norway) on egg production, these covariates showed no temporal trends. However, density-dependent effects occurred throughout the annual cycle, and the steadily increasing total flyway population size caused negative trends in overwinter survival and carryover effects on egg production. The combination of density-dependent processes and direct and indirect climate change effects across life history stages appeared to stabilize local population size. Our study emphasizes the need for holistic approaches when studying population-dynamic responses to global change in migratory species.</p

    Sea buckthorn berries <i>Hippophae rhamnoides</i> L. predict size and composition of a great tit population <i>Parus major</i> L.

    Get PDF
    In seasonal environments variation in food abundance in the non-breeding season is thought to affect songbird population dynamics. In a unique tit-sea buckthorn berry system we can estimate the berry abundance and both the tit consumption and population dynamics. Six hundred nest boxes were available to great and blue tits Cyanistes caeruleus for breeding in spring and roosting in winter. We followed the dynamics including the recapture histories of individually marked great tits from 2008 to 2014. In each year we estimated 1) the winter sea buckthorn berry availability, 2) an index of berry consumption in December based on the colour of the faeces of roosting birds, 3) the number of breeding great and blue tits, 4) both recapture probability and the return rate of the great tits and 5) immigration rates. December berry abundance positively predicted the number of breeding pairs of both species in the subsequent season and great tit return rates in the second half of the winter. There was support for a sex specific berry effect on the adult return rate in the great tit: female return rate was associated less strongly to berry abundance than male return rate. This skewed the sex ratio of the local breeders in the following breeding season. Intriguingly, annual berry consumption in December was not related to berry abundance, and individuals consuming more berries tended to have slightly lower return rates. Reproductive rate was not related to berry abundance. There was hardly support for a relation between immigration rates of first year breeders and berry abundance. Taken together these results imply that berry stock not only affected population size but also the population composition through sex specific exchange with the surroundings. Since population density covaried with berry abundance, density dependent effects provide an alternative explanation for the patterns observed
    corecore