287 research outputs found

    Formation of Sub-galactic Clouds under UV Background Radiation

    Get PDF
    The effects of the UV background radiation on the formation of sub-galactic clouds are studied by means of one-dimensional hydrodynamical simulations. The radiative transfer of the ionizing photons due to the absorption by HI, HeI and HeII, neglecting the emission, is explicitly taken into account. We find that the complete suppression of collapse occurs for the clouds with circular velocities typically in the range V_c \sim 15-40 km/s and the 50% reduction in the cooled gas mass with V_c \sim 20-55 km/s. These values depend most sensitively on the collapse epoch of the cloud, the shape of the UV spectrum, and the evolution of the UV intensity. Compared to the optically thin case, previously investigated by Thoul & Weinberg (1996), the absorption of the external UV photon by the intervening medium systematically lowers the above threshold values by \Delta V_c \sim 5 km/s. Whether the gas can contract or keeps expanding is roughly determined by the balance between the gravitational force and the thermal pressure gradient when it is maximally exposed to the external UV flux. Based on our simulation results, we discuss a number of implications on galaxy formation, cosmic star formation history, and the observations of quasar absorption lines. In Appendix, we derive analytical formulae for the photoionization coefficients and heating rates, which incorporate the frequency/direction-dependent transfer of external photons.Comment: 38 pages, 16 figures, accepted for publication in Ap

    Modifying the surface electronic properties of YBa2Cu3O7-delta with cryogenic scanning probe microscopy

    Full text link
    We report the results of a cryogenic study of the modification of YBa2Cu3O7-delta surface electronic properties with the probe of a scanning tunneling microscope (STM). A negative voltage applied to the sample during STM tunneling is found to modify locally the conductance of the native degraded surface layer. When the degraded layer is removed by etching, the effect disappears. An additional surface effect is identified using Scanning Kelvin Probe Microscopy in combination with STM. We observe reversible surface charging for both etched and unetched samples, indicating the presence of a defect layer even on a surface never exposed to air.Comment: 6 pages, 4 figures. To appear in Superconductor Science and Technolog

    Tony Blair and John Howard: comparative predominance and 'Institution Stretch' in the UK and Australia

    Get PDF
    It has recently been argued that the UK premier enjoys a level of executive power unavailable to US presidents, but how does he or she compare to another prime minister operating within a broadly similar system? Commonalities of intra-executive influence and capacity exist under the premierships in the UK and Australia. Discrete institutional constraints and deviations are evident, but trends and similarities in resource capacity can be clearly identified. These include: the growth of the leaders' office; broadening and centralising of policy advice and media operations; and strengthening of the role and function of ministerial advisers. I contend that this amounts to 'institution stretch', with new structures, processes and practices becoming embedded in the political system by the incumbents. © 2007 The Author. Journal compilation © 2007 Political Studies Association

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF
    In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers

    The roles of the formal and informal sectors in the provision of effective science education

    Get PDF
    For many years, formal school science education has been criticised by students, teachers, parents and employers throughout the world. This article presents an argument that a greater collaboration between the formal and the informal sector could address some of these criticisms. The causes for concern about formal science education are summarised and the major approaches being taken to address them are outlined. The contributions that the informal sector currently makes to science education are identified. It is suggested that the provision of an effective science education entails an enhanced complementarity between the two sectors. Finally, there is a brief discussion of the collaboration and communication still needed if this is to be effective

    Complete Genomic Characterization of a Pathogenic A.II Strain of Francisella tularensis Subspecies tularensis

    Get PDF
    Francisella tularensis is the causative agent of tularemia, which is a highly lethal disease from nature and potentially from a biological weapon. This species contains four recognized subspecies including the North American endemic F. tularensis subsp. tularensis (type A), whose genetic diversity is correlated with its geographic distribution including a major population subdivision referred to as A.I and A.II. The biological significance of the A.I – A.II genetic differentiation is unknown, though there are suggestive ecological and epidemiological correlations. In order to understand the differentiation at the genomic level, we have determined the complete sequence of an A.II strain (WY96-3418) and compared it to the genome of Schu S4 from the A.I population. We find that this A.II genome is 1,898,476 bp in size with 1,820 genes, 1,303 of which code for proteins. While extensive genomic variation exists between “WY96” and Schu S4, there is only one whole gene difference. This one gene difference is a hypothetical protein of unknown function. In contrast, there are numerous SNPs (3,367), small indels (1,015), IS element differences (7) and large chromosomal rearrangements (31), including both inversions and translocations. The rearrangement borders are frequently associated with IS elements, which would facilitate intragenomic recombination events. The pathogenicity island duplicated regions (DR1 and DR2) are essentially identical in WY96 but vary relative to Schu S4 at 60 nucleotide positions. Other potential virulence-associated genes (231) varied at 559 nucleotide positions, including 357 non-synonymous changes. Molecular clock estimates for the divergence time between A.I and A.II genomes for different chromosomal regions ranged from 866 to 2131 years before present. This paper is the first complete genomic characterization of a member of the A.II clade of Francisella tularensis subsp. tularensis

    Use of 16S rRNA Gene Based Clone Libraries to Assess Microbial Communities Potentially Involved in Anaerobic Methane Oxidation in a Mediterranean Cold Seep

    Get PDF
    This study provides data on the diversities of bacterial and archaeal communities in an active methane seep at the Kazan mud volcano in the deep Eastern Mediterranean sea. Layers of varying depths in the Kazan sediments were investigated in terms of (1) chemical parameters and (2) DNA-based microbial population structures. The latter was accomplished by analyzing the sequences of directly amplified 16S rRNA genes, resulting in the phylogenetic analysis of the prokaryotic communities. Sequences of organisms potentially associated with processes such as anaerobic methane oxidation and sulfate reduction were thus identified. Overall, the sediment layers revealed the presence of sequences of quite diverse bacterial and archaeal communities, which varied considerably with depth. Dominant types revealed in these communities are known as key organisms involved in the following processes: (1) anaerobic methane oxidation and sulfate reduction, (2) sulfide oxidation, and (3) a range of (aerobic) heterotrophic processes. In the communities in the lowest sediment layer sampled (22–34 cm), sulfate-reducing bacteria and archaea of the ANME-2 cluster (likely involved in anaerobic methane oxidation) were prevalent, whereas heterotrophic organisms abounded in the top sediment layer (0–6 cm). Communities in the middle layer (6–22 cm) contained organisms that could be linked to either of the aforementioned processes. We discuss how these phylogeny (sequence)-based findings can support the ongoing molecular work aimed at unraveling both the functioning and the functional diversities of the communities under study

    Korarchaeota Diversity, Biogeography, and Abundance in Yellowstone and Great Basin Hot Springs and Ecological Niche Modeling Based on Machine Learning

    Get PDF
    Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7–8.5 at concentrations up to 6.6×106 16S rRNA gene copies g−1 wet sediment. In Yellowstone National Park (YNP), Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB), Korarchaeota were most abundant at spring sources of pH<7.2 with high particulate C content and high alkalinity, which are likely to be buffered by the carbonic acid system. It is therefore likely that at least two different geological mechanisms in YNP and GB springs create the neutral to mildly acidic pH that is optimal for Korarchaeota. A classification support vector machine (C-SVM) trained on single analytes, two analyte combinations, or vectors from non-metric multidimensional scaling models was able to predict springs as Korarchaeota-optimal or sub-optimal habitats with accuracies up to 95%. To our knowledge, this is the most extensive analysis of the geochemical habitat of any high-level microbial taxon and the first application of a C-SVM to microbial ecology
    corecore