The effects of the UV background radiation on the formation of sub-galactic
clouds are studied by means of one-dimensional hydrodynamical simulations. The
radiative transfer of the ionizing photons due to the absorption by HI, HeI and
HeII, neglecting the emission, is explicitly taken into account. We find that
the complete suppression of collapse occurs for the clouds with circular
velocities typically in the range V_c \sim 15-40 km/s and the 50% reduction in
the cooled gas mass with V_c \sim 20-55 km/s. These values depend most
sensitively on the collapse epoch of the cloud, the shape of the UV spectrum,
and the evolution of the UV intensity. Compared to the optically thin case,
previously investigated by Thoul & Weinberg (1996), the absorption of the
external UV photon by the intervening medium systematically lowers the above
threshold values by \Delta V_c \sim 5 km/s. Whether the gas can contract or
keeps expanding is roughly determined by the balance between the gravitational
force and the thermal pressure gradient when it is maximally exposed to the
external UV flux. Based on our simulation results, we discuss a number of
implications on galaxy formation, cosmic star formation history, and the
observations of quasar absorption lines. In Appendix, we derive analytical
formulae for the photoionization coefficients and heating rates, which
incorporate the frequency/direction-dependent transfer of external photons.Comment: 38 pages, 16 figures, accepted for publication in Ap