363 research outputs found

    Use of Road Fabrics in Resurfacing and Reconstruction

    Get PDF

    Importance of late fall ENSO teleconnection in the Euro-Atlantic sector

    Get PDF
    Recent studies have indicated the importance of fall climate forcings and teleconnections in influencing the climate of the northern mid-to-high latitudes. Here, we present some exploratory analyses using observational data and seasonal hindcasts, with the aim of highlighting the potential of the El Niño-Southern Oscillation (ENSO) as a driver of climate variability during boreal late fall/early winter (November/December) in the North Atlantic-European sector and motivating further research on this relatively unexplored topic. The atmospheric ENSO teleconnection in November/December is reminiscent of the East Atlantic pattern and distinct from the well-known arching extratropical Rossby wavetrain found from January to March. Temperature and precipitation over Europe in November are positively correlated with the Niño3.4 index, which suggests a potentially important ENSO climate impact during late fall. In particular, the ENSO-related temperature anomaly extends over a much larger area than during the subsequent winter mont

    Estimation of the Prevalence of Progressive Fibrosing Interstitial Lung Diseases: Systematic Literature Review and Data from a Physician Survey

    Get PDF
    Some patients with interstitial lung diseases (ILDs) other than idiopathic pulmonary fibrosis exhibit a progressive clinical phenotype. These chronic progressive fibrosing ILDs have a variety of underlying diseases, and their prevalence is currently unknown. Here we carry out the first systematic review of literature on the prevalence of fibrosing ILDs and progressive fibrosing ILDs using data from physician surveys to estimate frequency of progression among different ILDs. We searched MEDLINE and Embase for studies assessing prevalence of ILD, individual ILDs associated with fibrosis and progressive fibrosing ILDs. These were combined with data from previously published physician surveys to obtain prevalence estimates of each chronic fibrosing ILD with a progressive phenotype and of progressive fibrosing ILDs overall. We identified 16 publications, including five reporting overall ILD prevalence, estimated at 6.3\u201376.0 per 100,000 people in Europe (four studies) and 74.3 per 100,000 in the USA (one study). In total, 13\u201340% of ILDs were estimated to develop a progressive fibrosing phenotype, with overall prevalence estimates for progressive fibrosing ILDs of 2.2\u201320.0 per 100,000 in Europe and 28.0 per 100,000 in the USA. Prevalence estimates for individual progressive fibrosing ILDs varied up to 16.7 per 100,000 people. These conditions represent a sizeable fraction of chronic respiratory disorders and have a high unmet need

    Cord blood epigenome-wide meta-analysis in six European-based child cohorts identifies signatures linked to rapid weight growth

    Get PDF
    BACKGROUND: Rapid postnatal growth may result from exposure in utero or early life to adverse conditions and has been associated with diseases later in life and, in particular, with childhood obesity. DNA methylation, interfacing early-life exposures and subsequent diseases, is a possible mechanism underlying early-life programming. METHODS: Here, a meta-analysis of Illumina HumanMethylation 450K/EPIC-array associations of cord blood DNA methylation at single CpG sites and CpG genomic regions with rapid weight growth at 1 year of age (defined with reference to WHO growth charts) was conducted in six European-based child cohorts (ALSPAC, ENVIRONAGE, Generation XXI, INMA, PiccolipiĂą, and RHEA, N = 2003). The association of gestational age acceleration (calculated using the Bohlin epigenetic clock) with rapid weight growth was also explored via meta-analysis. Follow-up analyses of identified DNA methylation signals included prediction of rapid weight growth, mediation of the effect of conventional risk factors on rapid weight growth, integration with transcriptomics and metabolomics, association with overweight in childhood (between 4 and 8 years), and comparison with previous findings. RESULTS: Forty-seven CpGs were associated with rapid weight growth at suggestive p-value <1e-05 and, among them, three CpGs (cg14459032, cg25953130 annotated to ARID5B, and cg00049440 annotated to KLF9) passed the genome-wide significance level (p-value <1.25e-07). Sixteen differentially methylated regions (DMRs) were identified as associated with rapid weight growth at false discovery rate (FDR)-adjusted/Siddak p-values < 0.01. Gestational age acceleration was associated with decreasing risk of rapid weight growth (p-value = 9.75e-04). Identified DNA methylation signals slightly increased the prediction of rapid weight growth in addition to conventional risk factors. Among the identified signals, three CpGs partially mediated the effect of gestational age on rapid weight growth. Both CpGs (N=3) and DMRs (N=3) were associated with differential expression of transcripts (N=10 and 7, respectively), including long non-coding RNAs. An AURKC DMR was associated with childhood overweight. We observed enrichment of CpGs previously reported associated with birthweight. CONCLUSIONS: Our findings provide evidence of the association between cord blood DNA methylation and rapid weight growth and suggest links with prenatal exposures and association with childhood obesity providing opportunities for early prevention

    The cord blood insulin and mitochondrial DNA content related methylome

    Get PDF
    Mitochondrial dysfunction seems to play a key role in the etiology of insulin resistance. At birth, a link has already been established between mitochondrial DNA (mtDNA) content and insulin levels in cord blood. In this study, we explore shared epigenetic mechanisms of the association between mtDNA content and insulin levels, supporting the developmental origins of this link. First, the association between cord blood insulin and mtDNA content in 882 newborns of the ENVIRONAGE birth cohort was assessed. Cord blood mtDNA content was established via qPCR, while cord blood levels of insulin were determined using electrochemiluminescence immunoassays. Then the cord blood DNA methylome and transcriptome were determined in 179 newborns, using the human 450K methylation Illumina and Agilent Whole Human Genome 8 Ă— 60 K microarrays, respectively. Subsequently, we performed an epigenome-wide association study (EWAS) adjusted for different maternal and neonatal variables. Afterward, we focused on the 20 strongest associations based on p-values to assign transcriptomic correlates and allocate corresponding pathways employing the R packages ReactomePA and RDAVIDWebService. On the regional level, we examined differential methylation using the DMRcate and Bumphunter packages in R. Cord blood mtDNA content and insulin were significantly correlated (r = 0.074, p = 0.028), still showing a trend after additional adjustment for maternal and neonatal variables (p = 0.062). We found an overlap of 33 pathways which were in common between the association with cord blood mtDNA content and insulin levels, including pathways of neurodevelopment, histone modification, cytochromes P450 (CYP)-metabolism, and biological aging. We further identified a DMR annotated to Repulsive Guidance Molecule BMP Co-Receptor A (RGMA) linked to cord blood insulin as well as mtDNA content. Metabolic variation in early life represented by neonatal insulin levels and mtDNA content might reflect or accommodate alterations in neurodevelopment, histone modification, CYP-metabolism, and aging, indicating etiological origins in epigenetic programming. Variation in metabolic hormones at birth, reflected by molecular changes, might via these alterations predispose children to metabolic diseases later in life. The results of this study may provide important markers for following targeted studies

    Translational Cancer Research: Balancing Prevention and Treatment to Combat Cancer Globally

    Get PDF
    Cancer research is drawing on the human genome project to develop new molecular-targeted treatments. This is an exciting but insufficient response to the growing, global burden of cancer, particularly as the projected increase in new cases in the coming decades is increasingly falling on developing countries. The world is not able to treat its way out of the cancer problem. However, the mechanistic insights from basic science can be harnessed to better understand cancer causes and prevention, thus underpinning a complementary public health approach to cancer control. This manuscript focuses on how new knowledge about the molecular and cellular basis of cancer, and the associated high-throughput laboratory technologies for studying those pathways, can be applied to population-based epidemiological studies, particularly in the context of large prospective cohorts with associated biobanks to provide an evidence base for cancer prevention. This integrated approach should allow a more rapid and informed translation of the research into educational and policy interventions aimed at risk reduction across a population

    Blood DNA methylation and breast cancer risk: a meta-analysis of four prospective cohort studies

    Get PDF
    BACKGROUND: Environmental and genetic factors play an important role in the etiology of breast cancer. Several small blood-based DNA methylation studies have reported risk associations with methylation at individual CpGs and average methylation levels; however, these findings require validation in larger prospective cohort studies. To investigate the role of blood DNA methylation on breast cancer risk, we conducted a meta-analysis of four prospective cohort studies, including a total of 1663 incident cases and 1885 controls, the largest study of blood DNA methylation and breast cancer risk to date. METHODS: We assessed associations with methylation at 365,145 CpGs present in the HumanMethylation450 (HM450K) Beadchip, after excluding CpGs that did not pass quality controls in all studies. Each of the four cohorts estimated odds ratios (ORs) and 95% confidence intervals (CI) for the association between each individual CpG and breast cancer risk. In addition, each study assessed the association between average methylation measures and breast cancer risk, adjusted and unadjusted for cell-type composition. Study-specific ORs were combined using fixed-effect meta-analysis with inverse variance weights. Stratified analyses were conducted by age at diagnosis ( 10 years). The false discovery rate (q value) was used to account for multiple testing. RESULTS: The average age at blood draw ranged from 52.2 to 62.2 years across the four cohorts. Median follow-up time ranged from 6.6 to 8.4 years. The methylation measured at individual CpGs was not associated with breast cancer risk (q value > 0.59). In addition, higher average methylation level was not associated with risk of breast cancer (OR = 0.94, 95% CI = 0.85, 1.05; P = 0.26; P for study heterogeneity = 0.86). We found no evidence of modification of this association by age at diagnosis (P = 0.17), ER status (P = 0.88), time since blood collection (P = 0.98), or CpG location (P = 0.98). CONCLUSIONS: Our data indicate that DNA methylation measured in the blood prior to breast cancer diagnosis in predominantly postmenopausal women is unlikely to be associated with substantial breast cancer risk on the HM450K array. Larger studies or with greater methylation coverage are needed to determine if associations exist between blood DNA methylation and breast cancer risk

    Perturbation of metabolic pathways mediates the association of air pollutants with asthma and cardiovascular diseases

    Get PDF
    BACKGROUND: Epidemiologic evidence indicates common risk factors, including air pollution exposure, for respiratory and cardiovascular diseases, suggesting the involvement of common altered molecular pathways. OBJECTIVES: The goal was to find intermediate metabolites or metabolic pathways that could be associated with both air pollutants and health outcomes ("meeting-in-the-middle"), thus shedding light on mechanisms and reinforcing causality. METHODS: We applied a statistical approach named 'meet-in-the-middle' to untargeted metabolomics in two independent case-control studies nested in cohorts on adult-onset asthma (AOA) and cardio-cerebrovascular diseases (CCVD). We compared the results to identify both common and disease-specific altered metabolic pathways. RESULTS: A novel finding was a strong association of AOA with ultrafine particles (UFP; odds ratio 1.80 [1.26, 2.55] per increase by 5000 particles/cm3). Further, we have identified several metabolic pathways that potentially mediate the effect of air pollution on health outcomes. Among those, perturbation of Linoleate metabolism pathway was associated with air pollution exposure, AOA and CCVD. CONCLUSIONS: Our results suggest common pathway perturbations may occur as a consequence of chronic exposure to air pollution leading to increased risk for both AOA and CCVD
    • …
    corecore