144 research outputs found
Active wetting of epithelial tissues
Development, regeneration and cancer involve drastic transitions in tissue
morphology. In analogy with the behavior of inert fluids, some of these
transitions have been interpreted as wetting transitions. The validity and
scope of this analogy are unclear, however, because the active cellular forces
that drive tissue wetting have been neither measured nor theoretically
accounted for. Here we show that the transition between 2D epithelial
monolayers and 3D spheroidal aggregates can be understood as an active wetting
transition whose physics differs fundamentally from that of passive wetting
phenomena. By combining an active polar fluid model with measurements of
physical forces as a function of tissue size, contractility, cell-cell and
cell-substrate adhesion, and substrate stiffness, we show that the wetting
transition results from the competition between traction forces and contractile
intercellular stresses. This competition defines a new intrinsic lengthscale
that gives rise to a critical size for the wetting transition in tissues, a
striking feature that has no counterpart in classical wetting. Finally, we show
that active shape fluctuations are dynamically amplified during tissue
dewetting. Overall, we conclude that tissue spreading constitutes a prominent
example of active wetting --- a novel physical scenario that may explain
morphological transitions during tissue morphogenesis and tumor progression
Recommended from our members
Combined transcriptomic-(1)H NMR metabonomic study reveals yhat monoethylhexyl phthalate stimulates adipogenesis and glyceroneogenesis in human adipocytes
Adipose tissue is a major storage site for lipophilic environmental contaminants. The environmental metabolic disruptor hypothesis postulates that some pollutants can promote obesity or metabolic disorders by activating nuclear receptors involved in the control of energetic homeostasis. In this context, monoethylhexyl phthalate (MEHP) is of particular concern since it was shown to activate the peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 murine preadipocytes. In the present work, we used an untargeted, combined transcriptomic-(1)H NMR-based metabonomic approach to describe the overall effect of MEHP on primary cultures of human subcutaneous adipocytes differentiated in vitro. MEHP stimulated rapidly and selectively the expression of genes involved in glyceroneogenesis, enhanced the expression of the cytosolic phosphoenolpyruvate carboxykinase, and reduced fatty acid release. These results demonstrate that MEHP increased glyceroneogenesis and fatty acid reesterification in human adipocytes. A longer treatment with MEHP induced the expression of genes involved in triglycerides uptake, synthesis, and storage; decreased intracellular lactate, glutamine, and other amino acids; increased aspartate and NAD, and resulted in a global increase in triglycerides. Altogether, these results indicate that MEHP promoted the differentiation of human preadipocytes to adipocytes. These mechanisms might contribute to the suspected obesogenic effect of MEHP
Identification of Protein Targets of Reactive Metabolites of Tienilic Acid in Human Hepatocytes
This document is the Accepted Manuscript version of a Published Work that appeared in final form in
Chemical Research in Toxicology, copyright © American Chemical Society after peer review and technical editing by the publisher.
To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/tx300103jTienilic acid (TA) is a uricosuric diuretic that was withdrawn from the market only months after its introduction because of reports of serious incidents of drug-induced liver injury including some fatalities. Its hepatotoxicity is considered to be primarily immunoallergic in nature. Like other thiophene compounds, TA undergoes biotransformation to a S-oxide metabolite which then reacts covalently with cellular proteins. To identify protein targets of TA metabolites, we incubated [14C]-TA with human hepatocytes, separated cellular proteins by 2D gel electrophoresis, and analyzed proteins in 36 radioactive spots by tryptic digestion followed by LC-MS/MS. Thirty one spots contained at least one identifiable protein. Sixteen spots contained only one of 14 non-redundant proteins which were thus considered to be targets of TA metabolites. Six of the 14 were also found in other radioactive spots that contained from 1 to 3 additional proteins. Eight of the 14 had not been reported to be targets for any reactive metabolite other than TA. The other 15 spots each contained from 2–4 identifiable proteins, many of which are known targets of other chemically reactive metabolites, but since adducted peptides were not observed, the identity of the adducted protein(s) in these spots is ambiguous. Interestingly, all the radioactive spots corresponded to proteins of low abundance, while many highly abundant proteins in the mixture showed no radioactivity. Furthermore, of approximately 16 previously reported protein targets of TA in rat liver (Methogo, R., Dansette, P. and Klarskov, K. (2007) Int. J. Mass Spectrom., 268, 284–295), only one (fumarylacetoacetase) is among the 14 targets identified in this work. One reason for this difference may be statistical, given that each study identified a small number of targets from among thousands present in hepatocytes. Another may be the species difference (i.e. rat vs. human), and still another may be the method of detection of adducted proteins (i.e. Western blot vs. C-14). Knowledge of human target proteins is very limited. Of more than 350 known protein targets of reactive metabolites, only 42 are known from human and only 21 of these are known to be targets for more than one chemical. Nevertheless, the demonstration that human target proteins can be identified using isolated hepatocytes in vitro should enable the question of species differences to be addressed more fully in the future
Clinicopathological significance of mitochondrial D-Loop mutations in head and neck carcinoma
Mitochondrial DNA mutations have been reported in several types of tumours, including head and neck squamous cell carcinoma (HNSCC). The noncoding region of the Displacement-Loop (D-Loop) has emerged as a mutational hotspot and we recently found that they were associated with prognosis and response to 5 fluorouracil (5FU) in colon cancers. In order to evaluate the frequence of D-Loop mutations in a large series of HNSCC and establish correlations with clinicopathologic parameters, we sequenced the D-Loop of 109 HNSCC before a treatment by neoadjuvant 5FU-cisplatin-based chemotherapy and surgery. Then, we correlated these mutations with prognosis and response to chemotherapy. A D-Loop mutation was identified in 21% of the tumors, the majority of them were located in a C-tract (D310). The prevalence of D310 mutations increased significantly with the number of cytosines in the matched normal tissue sequence (P=0.02). Hypopharyngeal cancer was significantly more frequent (P=0.03) and tobacco consumption more important (P=0.01) in the group of patients with D-Loop mutation. The presence of D-Loop mutation was not associated with prognosis or with response to neoadjuvant chemotherapy. These results suggest that D-Loop mutations should be considered as a cancer biomarker that may be useful for the early detection of HNSCC in individuals at risk of this cancer
Experimental approaches to evaluate activities of cytochromes P450 3A
Cytochrome P450 (CYP) is a heme protein oxidizing various xenobiotics, as well as endogenous substrates. Understanding which CYP enzymes are involved in metabolic activation and/or detoxication of different compounds is important in the assessment of an individual's susceptibility to the toxic action of these substances. Therefore, investigation which of several in vitro experimental models are appropriate to mimic metabolism of xenobiotics in organisms is the major challenge for research of many laboratories. The aim of this study was to evaluate the efficiency of different in vitro systems containing individual enzymes of the mixed-function monooxygenase system to oxidize two model substrates of CYP3A enzymes, exogenous and endogenous compounds, α-naphtoflavone (α-NF) and testosterone, respectively. Several different enzymatic systems containing CYP3A enzymes were utilized in the study: (i) human hepatic microsomes rich in CYP3A4, (ii) hepatic microsomes of rabbits treated with a CYP3A6 inducer, rifampicine, (iii) microsomes of Baculovirus transfected insect cells containing recombinant human CYP3A4 and NADPH:CYP reductase with or without cytochrome b5 (Supersomes™), (iv) membranes isolated from of Escherichia coli, containing recombinant human CYP3A4 and cytochrome b5, and (v) purified human CYP3A4 or rabbit CYP3A6 reconstituted with NADPH:CYP reductase with or without cytochrome b5 in liposomes. The most efficient systems oxidizing both compounds were Supersomes™ containing human CYP3A4 and cytochrome b5. The results presented in this study demonstrate the suitability of the supersomal CYP3A4 systems for studies investigating oxidation of testosterone and α-NF in vitro
The Reality of Neandertal Symbolic Behavior at the Grotte du Renne, Arcy-sur-Cure, France
The question of whether symbolically mediated behavior is exclusive to modern humans or shared with anatomically archaic populations such as the Neandertals is hotly debated. At the Grotte du Renne, Arcy-sur-Cure, France, the Châtelperronian levels contain Neandertal remains and large numbers of personal ornaments, decorated bone tools and colorants, but it has been suggested that this association reflects intrusion of the symbolic artifacts from the overlying Protoaurignacian and/or of the Neandertal remains from the underlying Mousterian
Forest biodiversity, ecosystem functioning and the provision of ecosystem services
Forests are critical habitats for biodiversity and they are also essential for the provision of a wide range of ecosystem services that are important to human well-being. There is increasing evidence that biodiversity contributes to forest ecosystem functioning and the provision of ecosystem services. Here we provide a review of forest ecosystem services including biomass production, habitat provisioning services, pollination, seed dispersal, resistance to wind storms, fire regulation and mitigation, pest regulation of native and invading insects, carbon sequestration, and cultural ecosystem services, in relation to forest type, structure and diversity. We also consider relationships between forest biodiversity and multifunctionality, and trade-offs among ecosystem services. We compare the concepts of ecosystem processes, functions and services to clarify their definitions. Our review of published studies indicates a lack of empirical studies that establish quantitative and causal relationships between forest biodiversity and many important ecosystem services. The literature is highly skewed; studies on provisioning of nutrition and energy, and on cultural services, delivered by mixed-species forests are under-represented. Planted forests offer ample opportunity for optimising their composition and diversity because replanting after harvesting is a recurring process. Planting mixed-species forests should be given more consideration as they are likely to provide a wider range of ecosystem services within the forest and for adjacent land uses. This review also serves as the introduction to this special issue of Biodiversity and Conservation on various aspects of forest biodiversity and ecosystem services
Comparison of monooxygenase activities and cytochrome P-450 isozyme concentrations in human liver microsomes.
Concentrations of three human liver microsomal cytochrome P-450 isozymes and 20 different monooxygenase activities were determined in human liver microsomal preparations. The results of correlation analysis suggest that: there are important variations in the amounts of the three cytochrome P-450 isozymes measured, particularly P-450(8) and P-450(9); aldrin epoxidase, d-benzphetamine N-demethylase, and S-warfarin 4-hydroxylase activities are linked to cytochrome P-450(5); aryl hydrocarbon (benzo(a)pyrene) hydroxylase and 4-nitroanisole-O-demethylase activities are linked to P-450(8); hydroxylations at the 4'-, 6-, 7-, and 8-positions of R-warfarin are closely linked to each other but are not correlated with other measured monooxygenase activities or P-450 isozyme levels; and P-450(9) is not related to any of the catalytic activities tested. Thus, certain monooxygenase activities can be attributed to specific cytochrome P-450 isozymes. This approach should be useful in suggesting the roles of different cytochromes P-450 in drug metabolism in man which can be further examined using in vitro and in vivo methods
- …