688 research outputs found

    Developing the Technique of Measurements of Magnetic Field in the CMS Steel Yoke Elements With Flux-Loops and Hall Probes

    Full text link
    Compact muon solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN large hadron collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in theCMSdetector, including the large ferromagnetic parts of the yoke, is required. To measure the field in and around ferromagnetic parts, a set of flux-loops and Hall probe sensors will be installed on several of the steel pieces. Fast discharges of the solenoid during system commissioning tests will be used to induce voltages in the flux-loops that can be integrated to measure the flux in the steel at full excitation of the solenoid. The Hall sensors will give supplementary information on the axial magnetic field and permit estimation of the remanent field in the steel after the fast discharge. An experimental R&D program has been undertaken, using a test flux-loop, two Hall sensors, and sample disks made from the same construction steel used for the CMS magnet yoke. A sample disc, assembled with the test flux-loop and the Hall sensors, was inserted between the pole tips of a dipole electromagnet equipped with a computer-controlled power supply to measure the excitation of the steel from full saturation to zero field. The results of the measurements are presented and discussed.Comment: 6 pages, 8 figures, 6 reference

    Stepping On Fall Prevention Project

    Full text link
    Background: Falls are a major problem in the United States among the older adult population and provide opportunity for community outreach via student-led physical therapy projects. Objective: The purpose of this project was to investigate the relationship between fall related outcome measures and questionnaires with the completion of the Stepping On Fall Prevention program along with evaluating the benefits of Physical Therapy student development with participation in service learning projects. Methods: The research quantified the fall risk of 13 participants with assessment of: gait speed (Timed Up and Go), lower extremity strength (30-Second Chair Stand), balance (4-Stage Balance Test), and psychological factors (Stay Independent Questionnaire, Falls Efficacy Scale-International, and Geriatric Depression Scale). Results: Of the functional measures, significant improvements were observed in the Timed up and Go (TUG) (∆1.72s ± 1.66, p=0.003), the 30-second chair stand (∆4.54 ± 4.27, p= 0.002), Stage 4 of the 4-Stage Balance Test (∆3.37s ± 3.26, p= 0.003), and the Stay Independent questionnaire (∆1.77 ± 2.52, p=0.026). Conclusion: Stepping On demonstrated improvements in gait speed, strength, and balance. These improvements allow older adults to improve their overall safety in both their own homes and the community. More research is needed to evaluate the psychological benefits of completing Stepping On. Furthermore, service learning project opportunities should become more of a standard practice across physical therapy programs

    Novel Mutation in the Apob Gene (Apo B-15.56): A Case Report

    Get PDF
    Novel Mutation in the Apob Gene (Apo B-15.56): A Case ReportFamilial hypobetalipoproteinemia (FHBL) is a rare co-dominant genetic disorder characterized by decrease of plasma low density lipoprotein-cholesterol (LDL-c) or apolipoprotein B (Apo-B) equal to or less than the 5th percentile for the population. We describe a 48-year-old male who presented with fatty liver disease (FLD), insulin resistance (IR), obesity and hypertension. Our patient thus met the latest diagnostic criteria of the metabolic syndrome (MS) proposed by the Adult Treatment Panel and the International Diabetes Federation. However, he had very low plasma concentration of LDL-c and Apo-B. DNA sequencing showed that he and two first-degree relatives affected by obesity and mild IR were heterozygous for a single nucleotide deletion on exon 15 of the APOB gene, which was predicted to form a truncated Apo-B designated Apo B-15.56

    Measurement of the CMS Magnetic Field

    Full text link
    The measurement of the magnetic field in the tracking volume inside the superconducting coil of the Compact Muon Solenoid (CMS) detector under construction at CERN is done with a fieldmapper designed and produced at Fermilab. The fieldmapper uses 10 3-D B-sensors (Hall probes) developed at NIKHEF and calibrated at CERN to precision 0.05% for a nominal 4 T field. The precise fieldmapper measurements are done in 33840 points inside a cylinder of 1.724 m radius and 7 m long at central fields of 2, 3, 3.5, 3.8, and 4 T. Three components of the magnetic flux density at the CMS coil maximum excitation and the remanent fields on the steel-air interface after discharge of the coil are measured in check-points with 95 3-D B-sensors located near the magnetic flux return yoke elements. Voltages induced in 22 flux-loops made of 405-turn installed on selected segments of the yoke are sampled online during the entire fast discharge (190 s time-constant) of the CMS coil and integrated offline to provide a measurement of the initial magnetic flux density in steel at the maximum field to an accuracy of a few percent. The results of the measurements made at 4 T are reported and compared with a three-dimensional model of the CMS magnet system calculated with TOSCA.Comment: 4 pages, 5 figures, 15 reference

    Commissioning of the CMS Magnet

    Get PDF
    CMS (Compact Muon Solenoid) is one of the large experiments for the LHC at CERN. The superconducting magnet for CMS has been designed to reach a 4 T field in a free bore of 6 m diameter and 12.5 m length with a stored energy of 2.6 GJ at full current. The flux is returned through a 10 000 t yoke comprising of five wheels and two end caps composed of three disks each. The magnet was designed to be assembled and tested in a surface hall, prior to be lowered at 90 m below ground, to its final position in the experimental cavern. The distinctive feature of the cold mass is the four-layer winding, made from a reinforced and stabilized NbTi conductor. The design and construction was carried out by CMS participating institutes through technical and contractual endeavors. Among them CEA Saclay, INFN Genova, ETH Zurich, Fermilab, ITEP Moscow, University of Wisconsin and CERN. The construction of the CMS Magnet, and of the coil in particular, has been completed last year. The magnet has just been powered to full field achieving electrical commissioning. After a brief reminder of the design and construction the first results of the commissioning are reported in this paper

    Design, construction, and quality tests of the large Al-alloy mandrels for the CMS coil

    Get PDF
    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. Almost all large indirectly cooled solenoids constructed to date (e.g., Zeus, Aleph, Delphi, Finuda, Babar) comprise Al-alloy mandrels fabricated by welding together plates bent to the correct radius. The external cylinder of CMS will consist of five modules having an inner diameter of 6.8 m, a thickness of 50 mm and an individual length of 2.5 m. It will be manufactured by bending and welding thick plates (75 mm) of the strain hardened aluminum alloy EN AW-5083-H321. The required high geometrical tolerances and mechanical strength (a yield strength of 209 MPa at 4.2 K) impose a critical appraisal of the design, the fabrication techniques, the welding procedures and the quality controls. The thick flanges at both ends of each module will be fabricated as seamless rolled rings, circumferentially welded to the body of the modules. The developed procedures and manufacturing methods will be validated by the construction of a prototype mandrel of full diameter and reduced length (670 mm). (7 refs)

    Self-cleaning and colour-preserving efficiency of photocatalytic concrete: case study of the Jubilee Church in Rome

    Get PDF
    The Jubilee Church in the south-eastern outskirts of Rome is one of the first buildings constructed with super white reinforced concrete with self-cleaning photocatalytic cement. However, 16 years after the opening of the building, the self-cleaning and colour-preserving properties arising from the titania particles (TiO2) within the concrete mix are not meeting the design requirements and the concrete is showing premature evidence of decay. While the form of the decay is affecting the appearance of the building and not its structural soundness, the ageing pattern of the building's components is resulting in a high maintenance cost, one not easily affordable within the ordinary budget supported by a small parish. This study comprises the first comprehensive step in understanding the causes of the accelerated ageing pattern of the concrete, highlighting methods to improve the long-term durability of the concrete and therefore reduce the cost of its maintenance. Moreover, this research offered the opportunity to test the durability and the effectiveness of the TiO2 in the real conditions on an actual building featuring non-standard geometries. The findings highlight how the ageing pattern directly connects with the geometry of the building and inadequate consideration of the local weathering at the design stage

    Soil-site suitability evaluation for cardamom - A case study

    Get PDF
    Nineteen soil profiles representing seven soil series with sixteen mapping units were collected, described and mapped at Indian Institute of Spices Research, Cardamom Research Centre, Appangala, Madikeri, Karnataka for evaluating their suitability for cardamom cultivation. Soil and site properties such as climate, depth, slope, elevation, shade, texture, drainage, etc were compared with suitability criteria and the soils were assessed for growing cardamom. It is indicated that the well distributed rainfall of 1500-2000 mm with well drained conditions, a soil depth of more than 80 cm and 900-1200 m elevation support good crop of cardamom. The critical limit of Available Water Capacity was found to be 100 cm. Of the total area of the research station, 42 per cent area is highly suitable for cardamom cultivation. About 53 per cent of the area is moderately suitable and about 4 per cent is marginally suitable. &nbsp

    Soil-site suitability evaluation for cardamom - A case study

    Get PDF
    Nineteen soil profiles representing seven soil series with sixteen mapping units were collected, described and mapped at Indian Institute of Spices Research, Cardamom Research Centre, Appangala, Madikeri, Karnataka for evaluating their suitability for cardamom cultivation. Soil and site properties such as climate, depth, slope, elevation, shade, texture, drainage, etc were compared with suitability criteria and the soils were assessed for growing cardamom. It is indicated that the well distributed rainfall of 1500-2000 mm with well drained conditions, a soil depth of more than 80 cm and 900-1200 m elevation support good crop of cardamom. The critical limit of Available Water Capacity was found to be 100 cm. Of the total area of the research station, 42 per cent area is highly suitable for cardamom cultivation. About 53 per cent of the area is moderately suitable and about 4 per cent is marginally suitable. &nbsp

    A Large Hadron Electron Collider at CERN

    Full text link
    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb−1^{-1}. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC
    • 

    corecore