146 research outputs found

    Retrieval of stratospheric and tropospheric BrO profiles and columns using ground-based zenith-sky DOAS observations at Harestua, 60° N

    Get PDF
    A profiling algorithm based on the optimal estimation method is applied to ground-based zenith-sky UV-visible measurements from Harestua, Southern Norway (60&deg; N, 11&deg; E) in order to retrieve BrO vertical profiles. The sensitivity of the zenith-sky observations to the tropospheric BrO detection is increased by using for the spectral analysis a fixed reference spectrum corresponding to clear-sky noon summer conditions. The information content and retrieval errors are characterized and it is shown that the retrieved stratospheric profiles and total columns are consistent with correlative balloon and satellite observations, respectively. Tropospheric BrO columns are derived from profiles retrieved at 80&deg; solar zenith angle during sunrise and sunset for the 2000&ndash;2006 period. They show a marked seasonality with mean column value ranging from 1.52&plusmn;0.62&times;10<sup>13</sup> molec/cm² in late winter/early spring to 0.92&plusmn;0.38&times;10<sup>13</sup> molec/cm² in summer, which corresponds to 1.0&plusmn;0.4 and 0.6&plusmn;0.2 pptv, respectively, if we assume that BrO is uniformly mixed in the troposphere. These column values are also consistent with previous estimates made from balloon, satellite, and other ground-based observations. Daytime (10:30 LT) tropospheric BrO columns are compared to the <i>p</i>-TOMCAT 3-D tropospheric chemical transport model (CTM) for the 2002&ndash;2003 period. <i>p</i>-TOMCAT shows a good agreement with the retrieved columns except in late winter/early spring where an underestimation by the model is obtained. This finding could be explained by the non-inclusion of sea-ice bromine sources in the current version of <i>p</i>-TOMCAT. Therefore the model cannot reproduce the possible transport of air-masses with enhanced BrO concentration due to bromine explosion events from the polar region to Harestua. The daytime stratospheric BrO columns are compared to the SLIMCAT stratospheric 3-D-CTM. The model run used in this study, which assumes 21.2 pptv for the Br<sub>y</sub> loading (15 pptv for long-lived bromine species and additional 6 pptv for very short-lived species (VSLS) added by a scaling of CH<sub>3</sub>Br), significantly underestimates the retrieved BrO columns. A sensitivity study shows that a good agreement can only be obtained if 6 to 8 pptv accounting for VSLS are added directly (and not by a scaling of CH<sub>3</sub>Br) to the SLIMCAT long-lived bromine species profile. This contribution of the VSLS to the total bromine loading is also consistent with recently published studies

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Validation of Sentinel-5P TROPOMI tropospheric NO2 products by comparison with NO2 measurements from airborne imaging, ground-based stationary, and mobile car DOAS measurements during the S5P-VAL-DE-Ruhr campaign

    Get PDF
    Airborne imaging differential optical absorption spectroscopy (DOAS), ground-based stationary and car DOAS measurements were conducted during the S5P-VAL-DE-Ruhr campaign in September 2020. The campaign area is located in the Rhine-Ruhr region of North Rhine-Westphalia, Western Germany, which is a pollution hotspot in Europe comprising urban and large industrial emitters. The measurements are used to validate space-borne NO2 tropospheric vertical column density data products from the Sentinel-5 Precursor (S5P) TROPOspheric Monitoring Instrument (TROPOMI). Seven flights were performed with the airborne imaging DOAS instrument for measurements of atmospheric pollution (AirMAP), providing measurements which were used to create continuous maps of NO2 in the layer below the aircraft. These flights cover many S5P ground pixels within an area of 30 km x 35 km and were accompanied by ground-based stationary measurements and three mobile car DOAS instruments. Stationary measurements were conducted by two Pandora, two zenith-sky and two MAX-DOAS instruments distributed over three target areas. Ground-based stationary and car DOAS measurements are used to evaluate the AirMAP tropospheric NO2 vertical column densities and show high Pearson correlation coefficients of 0.87 and 0.89 and slopes of 0.93 &plusmn; 0.09 and 0.98 &plusmn; 0.02 for the stationary and car DOAS, respectively. Having a spatial resolution of about 100 m x 30 m, the AirMAP tropospheric NO2 vertical column density (VCD) data creates a link between the ground-based and the TROPOMI measurements with a resolution of 3.5 km x 5.5 km and is therefore well suited to validate the TROPOMI tropospheric NO2 VCD. The measurements on the seven flight days show strong NO2 variability, which is dependent on the different target areas, the weekday, and the meteorological conditions. The AirMAP campaign dataset is compared to the TROPOMI NO2 operational off-line (OFFL) V01.03.02 data product, the reprocessed NO2 data, using the V02.03.01 of the official L2 processor, provided by the Product Algorithm Laboratory (PAL), and several scientific TROPOMI NO2 data products. The TROPOMI data products and the AirMAP data are highly correlated with correlation coefficients between 0.72 and 0.87, and slopes of 0.38 &plusmn; 0.02 to 1.02 &plusmn; 0.07. On average, TROPOMI tropospheric NO2 VCDs are lower than the AirMAP NO2 results. The slope increased from 0.38 &plusmn; 0.02 for the operational OFFL V01.03.02 product to 0.83 &plusmn; 0.06 after the improvements in the retrieval of the PAL V02.03.01 product were implemented. Different auxiliary data, such as spatially higher resolved a priori NO2 vertical profiles, surface reflectivity and the cloud treatment, are investigated using scientific TROPOMI tropospheric NO2 VCD data products to evaluate their impact on the operational TROPOMI NO2 VCD data product. The comparison of the AirMAP campaign dataset to the scientific data products shows that the choice of surface reflectivity data base has a minor impact on the tropospheric NO2 VCD retrieval in the campaign region and season. In comparison, the replacement of the a priori NO2 profile in combination with the improvements in the retrieval of the PAL V02.03.01 product regarding cloud heights has a major impact on the tropospheric NO2 VCD retrieval and increases the slope from 0.88 &plusmn; 0.06 to 1.00 &plusmn; 0.07. This study demonstrates that the underestimation of the TROPOMI tropospheric NO2 VCD product with respect to the validation dataset has been and can be further significantly improved.</p

    Validation of ACE and OSIRIS ozone and NO2 measurements using ground-based instruments at 80 degrees N

    Get PDF
    The Optical Spectrograph and Infra-Red Imager System (OSIRIS) and the Atmospheric Chemistry Experiment (ACE) have been taking measurements from space since 2001 and 2003, respectively. This paper presents intercomparisons between ozone and NO2 measured by the ACE and OSIRIS satellite instruments and by ground-based instruments at the Polar Environment Atmospheric Research Laboratory (PEARL), which is located at Eureka, Canada (80A degrees N, 86A degrees W) and is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). The ground-based instruments included in this study are four zenith-sky differential optical absorption spectroscopy (DOAS) instruments, one Bruker Fourier transform infrared spectrometer (FTIR) and four Brewer spectrophotometers. Ozone total columns measured by the DOAS instruments were retrieved using new Network for the Detection of Atmospheric Composition Change (NDACC) guidelines and agree to within 3.2%. The DOAS ozone columns agree with the Brewer spectrophotometers with mean relative differences that are smaller than 1.5%. This suggests that for these instruments the new NDACC data guidelines were successful in producing a homogenous and accurate ozone dataset at 80A degrees N. Satellite 14-52 km ozone and 17-40 km NO2 partial columns within 500 km of PEARL were calculated for ACE-FTS Version 2.2 (v2.2) plus updates, ACE-FTS v3.0, ACE-MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) v1.2 and OSIRIS SaskMART v5.0x ozone and Optimal Estimation v3.0 NO2 data products. The new ACE-FTS v3.0 and the validated ACE-FTS v2.2 partial columns are nearly identical, with mean relative differences of 0.0 +/- 0.2% and -0.2 +/- 0.1% for v2.2 minus v3.0 ozone and NO2, respectively. Ozone columns were constructed from 14-52 km satellite and 0-14 km ozonesonde partial columns and compared with the ground-based total column measurements. The satellite-plus-sonde measurements agree with the ground-based ozone total columns with mean relative differences of 0.1-7.3%. For NO2, partial columns from 17 km upward were scaled to noon using a photochemical model. Mean relative differences between OSIRIS, ACE-FTS and ground-based NO2 measurements do not exceed 20%. ACE-MAESTRO measures more NO2 than the other instruments, with mean relative differences of 25-52%. Seasonal variation in the differences between NO2 partial columns is observed, suggesting that there are systematic errors in the measurements and/or the photochemical model corrections. For ozone spring-time measurements, additional coincidence criteria based on stratospheric temperature and the location of the polar vortex were found to improve agreement between some of the instruments. For ACE-FTS v2.2 minus Bruker FTIR, the 2007-2009 spring-time mean relative difference improved from -5.0 +/- 0.4% to -3.1 +/- 0.8% with the dynamical selection criteria. This was the largest improvement, likely because both instruments measure direct sunlight and therefore have well-characterized lines-of-sight compared with scattered sunlight measurements. For NO2, the addition of a +/- 1A degrees latitude coincidence criterion improved spring-time intercomparison results, likely due to the sharp latitudinal gradient of NO2 during polar sunrise. The differences between satellite and ground-based measurements do not show any obvious trends over the missions, indicating that both the ACE and OSIRIS instruments continue to perform well

    The 2015 edition of the GEISA spectroscopic database

    Get PDF
    The GEISA database (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) has been developed and maintained by the ARA/ABC(t) group at LMD since 1974. GEISA is constantly evolving, taking into account the best available spectroscopic data. This paper presents the 2015 release of GEISA (GEISA-2015), which updates the last edition of 2011 and celebrates the 40th anniversary of the database. Significant updates and additions have been implemented in the three following independent databases of GEISA. The “line parameters database” contains 52 molecular species (118 isotopologues) and transitions in the spectral range from 10−6 to 35,877.031 cm−1, representing 5,067,351 entries, against 3,794,297 in GEISA-2011. Among the previously existing molecules, 20 molecular species have been updated. A new molecule (SO3) has been added. HDO, isotopologue of H2O, is now identified as an independent molecular species. Seven new isotopologues have been added to the GEISA-2015 database. The “cross section sub-database” has been enriched by the addition of 43 new molecular species in its infrared part, 4 molecules (ethane, propane, acetone, acetonitrile) are also updated; they represent 3% of the update. A new section is added, in the near-infrared spectral region, involving 7 molecular species: CH3CN, CH3I, CH3O2, H2CO, HO2, HONO, NH3. The “microphysical and optical properties of atmospheric aerosols sub-database” has been updated for the first time since 2003. It contains more than 40 species originating from NCAR and 20 from the ARIA archive of Oxford University. As for the previous versions, this new release of GEISA and associated management software facilities are implemented and freely accessible on the AERIS/ESPRI atmospheric chemistry data center website

    Insect prey population changes in habitats with declining vs. stable Three-toed Woodpecker Picoides tridactylus populations

    No full text
    The effect of food supply on the Three-toed Woodpecker Picoides tridactylus breeding density and productivity was investigated by comparing the pattern of annual changes in prey abundance in habitats with declining vs. stable woodpecker populations. In a bumt area of eastern Finland, where the woodpecker breeding population has been continuously diminishing, following a major increase the first year after fire, only the abundance of spruce bark beetles (Col., Scolytidae) (the woodpecker autumnspring main insect prey) decreased through the years. Conversely, the abundance of longhorn beetles (Col., Cerambycidae) (the nestling main food supply) increased dramatically. On the other hand, in neighbouring old-growth patches where one pair was breeding annually, abundance of spruce bark and longhorn beetles did not change significantly between years, although the abundance level ofthe bark beetles differed among patches. Hence, my results suggest the woodpecker breeding population to be limited by food supply available outside the breeding season, as shown for other forest bird species. The finding, however, that woodpeckers breeding 6-7 years after the fire reared larger broods than earlier pairs, while brood size did not change annually under old-growth conditions, suggests longhorn beetle availability to be critical to reproductive success

    Available insect prey in bark patches selected by the Three-toed Woodpecker Picoides tridactylus prior to reproduction

    No full text
    The diet composition of the Three-toed Woodpecker (Picoides tridactylus) before the onset of egg laying was investigated in eastern Finland. This was carried out in 1997 and 1998 by collecting bark samples from woodpecker territories in six old-growth and two burnt forest patches during the two month period preceding the start of reproductive activities . Bark samples (10 x 15 cm) were removed from the immediate vicinity of afreshly exploited area, either directly after aforaging bird left the tree or from trees recently exploited. A total of 55 bark samples were collected, from which 33 were found after direct foraging observation. Recently dead spruce comprised 89% of foraging substrates . Including adult, larva and pupa development stages, 3236 potential insect prey were collected and identified. Among them, Scolytids, or bark beetles, represented 96.9% of the insect prey. This proportion did not differ between territories, sexes and years . Some 78.5% of adult bark beetles found were classified as mature spruce forest interior specialists
    corecore