474 research outputs found

    Lunar lander conceptual design

    Get PDF
    This paper is a first look at the problems of building a lunar lander to support a small lunar surface base. A series of trade studies was performed to define the lander. The initial trades concerned choosing number of stages, payload mass, parking orbit altitude, and propellant type. Other important trades and issues included plane change capability, propellant loading and maintenance location, and reusability considerations. Given a rough baseline, the systems were then reviewed. A conceptual design was then produced. The process was carried through only one iteration. Many more iterations are needed. A transportation system using reusable, aerobraked orbital transfer vehicles (OTV's) is assumed. These OTV's are assumed to be based and maintained at a low Earth orbit (LEO) space station, optimized for transportation functions. Single- and two-stage OTV stacks are considered. The OTV's make the translunar injection (TLI), lunar orbit insertion (LOI), and trans-Earth injection (TEI) burns, as well as midcourse and perigee raise maneuvers

    Short communication: Characterization of a monoclonal antibody for Îş-casein B of cow's milk1

    Get PDF
    A monoclonal antibody (antik-B) against an oligopeptide of 23 AA corresponding to the region 131-153 of bovine kappa-casein (kappa-CN) B was generated using the Human Combinatorial Antibody Library (HuCAL) technology. Both AA substitutions distinguishing kappa-CN A and B are located in that region (positions 136 and 148). In this study, the reactivity of antik-B to milk samples collected from cows previously genotyped as CSN3*AA, CSN3*AB, and CSN3*BB was tested. According to Western blot results, antik-B recognized kappa-CN B and it showed no cross-reactivity toward kappa-CN A and other milk proteins. Furthermore, a modified Western blot method, urea-PAGE Western blot, was set up to assess the reactivity of antik-B toward all isoforms of kappa-CN B. In conclusion, antik-B was specific to kappa-CN B in milk and it seemed to be reactive toward all its isoforms

    A recombinant bovine herpesvirus-4 vectored vaccine delivered via intranasal nebulization elicits viral neutralizing antibody titers in cattle

    Get PDF
    Recombinant herpesvirus vaccine vectors offer distinct advantages in next-generation vaccine development, primarily due to the ability to establish persistent infections to provide sustainable antigen responses in the host. Recombinant bovine herpesvirus-4 (BoHV-4) has been previously shown to elicit protective immunity in model laboratory animal species against a variety of pathogens. For the first time, we describe the induction of antigen-specific immune responses to two delivered antigens in the host species after intranasal nebulization of recombinant BoHV-4 expressing the chimeric peptide containing the bovine viral diarrhea virus (BVDV) glycoprotein E2 and the bovine herpesvirus 1 (BoHV-1) glycoprotein D (BoHV-4-A-CMV-IgK-gE2gD-TM). In this study, four cattle were immunized via intranasal nebulization with the recombinant BoHV-4 construct. Two of the cattle were previously infected with wild-type BoHV-4, and both developed detectable serologic responses to BVDV and BoHV-1. All four immunized cattle developed detectable viral neutralizing antibody responses to BVDV, and one steer developed a transient viral neutralizing response to BoHV-1. Approximately one year after immunization, immunosuppressive doses of the glu-cocorticoid dexamethasone were administered intravenously to all four cattle. Within two weeks of immunosuppression, all animals developed viral neutralizing antibody responses to BoHV-1, and all animals maintained BVDV viral neutralizing capacity. Overall, nebulization of BoHV-4-A-CMV-IgK-gE2gD-TM persistently infects cattle, is capable of eliciting antigen-specific immunity following immunization, including in the presence of pre-existing BoHV-4 immunity, and recrudescence of the virus boosts the immune response to BoHV-4-vectored antigens. These results indicate that BoHV-4 is a viable and attractive vaccine delivery platform for use in cattle

    BoHV-4-based vector delivering Ebola virus surface glycoprotein

    Get PDF
    Background: Ebola virus (EBOV) is a Category A pathogen that is a member of Filoviridae family that causes hemorrhagic fever in humans and non-human primates. Unpredictable and devastating outbreaks of disease have recently occurred in Africa and current immunoprophylaxis and therapies are limited. The main limitation of working with pathogens like EBOV is the need for costly containment. To potentiate further and wider opportunity for EBOV prophylactics and therapies development, innovative approaches are necessary. Methods: In the present study, an antigen delivery platform based on a recombinant bovine herpesvirus 4 (BoHV-4), delivering a synthetic EBOV glycoprotein (GP) gene sequence, BoHV-4-syEBOVgD106TK, was generated. Results: EBOV GP was abundantly expressed by BoHV-4-syEBOVgD106TK transduced cells without decreasing viral replication. BoHV-4-syEBOVgD106TK immunized goats produced high titers of anti-EBOV GP antibodies and conferred a long lasting (up to 6 months), detectable antibody response. Furthermore, no evidence of BoHV-4-syEBOVgD106TK viremia and secondary localization was detected in any of the immunized animals. Conclusions: The BoHV-4-based vector approach described here, represents: an alternative antigen delivery system for vaccination and a proof of principle study for anti-EBOV antibodies generation in goats for potential immunotherapy applications

    Faculty and Administrative Partnerships: Disciplinary Differences in Perceptions of Civic Engagement and Service-Learning at a Large, Research-Extensive University

    Get PDF
    In recent years, considerable energy has been expended attempting to define, evaluate and promote active learning pedagogies such as civic engagement and service-learning. Yet much of this scholarship treats civic engagement and service-learning at either a macroscopic level (studying an entire university system) or microscopic level (studying a particular course or project). There has been comparably less research examining how different disciplinary cultures influence the conceptualization and implementation of active learning pedagogies within individual institutions. This study draws on quantitative survey methodologies to examine faculty perceptions of civic engagement and service-learning at a major public research university within and across four disciplines: the Humanities, Behavioral and Social Sciences, Science, Technology, Engineering, and Mathematics (STEM), and the Applied Professions. Quantitative results reveal significant variance in disciplinary approaches to civic engagement and service-learning across a variety of measures including advocacy, concerns, and goals for active learning pedagogies. The findings suggest several strategies for recognizing disciplinary differences and encouraging collaboration among faculty and between disciplines on civic engagement and service-learning approaches in higher education

    Evidence for a Novel Reaction Mechanism of a Prompt Shock-Induced Fission Following the Fusion of 78Kr and 40Ca Nuclei at E/A =10 MeV

    Full text link
    An analysis of experimental data from the inverse-kinematics ISODEC experiment on 78Kr+40Ca reaction at a bombarding energy of 10 AMeV has revealed signatures of a hitherto unknown reaction mechanism, intermediate between the classical damped binary collisions and fusion-fission, but also substantially different from what is being termed in the literature as fast fission or quasi fission. These signatures point to a scenario where the system fuses transiently while virtually equilibrating mass asymmetry and energy and, yet, keeping part of the energy stored in a collective shock-imparted and, possibly, angular momentum bearing form of excitation. Subsequently the system fissions dynamically along the collision or shock axis with the emerging fragments featuring a broad mass spectrum centered around symmetric fission, relative velocities somewhat higher along the fission axis than in transverse direction, and virtually no intrinsic spin. The class of massasymmetric fission events shows a distinct preference for the more massive fragments to proceed along the beam direction, a characteristic reminiscent of that reported earlier for dynamic fragmentation of projectile-like fragments alone and pointing to the memory of the initial mass and velocity distribution.Comment: 5 PAGES, 6 FIGURE

    WINGS-SPE Spectroscopy in the WIde-field Nearby Galaxy-cluster Survey

    Full text link
    Aims. We present the results from a comprehensive spectroscopic survey of the WINGS (WIde-field Nearby Galaxy-cluster Survey) clusters, a program called WINGS-SPE. The WINGS-SPE sample consists of 48 clusters, 22 of which are in the southern sky and 26 in the north. The main goals of this spectroscopic survey are: (1) to study the dynamics and kinematics of the WINGS clusters and their constituent galaxies, (2) to explore the link between the spectral properties and the morphological evolution in different density environments and across a wide range in cluster X-ray luminosities and optical properties. Methods. Using multi object fiber fed spectrographs, we observed our sample of WINGS cluster galaxies at an intermediate resolu- tion of 6-9 A and, using a cross-correlation technique, we measured redshifts with a mean accuracy of about 45 km/s. Results. We present redshift measurements for 6137 galaxies and their first analyses. Details of the spectroscopic observations are reported. The WINGS-SPE has about 30% overlap with previously published data sets, allowing us to do both a complete comparison with the literature and to extend the catalogs. Conclusions. Using our redshifts, we calculate the velocity dispersion for all the clusters in the WINGS-SPE sample. We almost trip- licate the number of member galaxies known in each cluster with respect to previous works. We also investigate the X-ray luminosity vs. velocity dispersion relation for our WINGS-SPE clusters, and find it to be consistent with the form Lx proportional to sigma^4.Comment: 16 pages, 10 Postscript figures, accepted for publication in Astronomy and Astrophysic

    Omics sciences and precision medicine in melanoma

    Get PDF
    Background: This article provides an overview of the application of omics sciences in melanoma research. The name omics sciences refers to the large-scale analysis of biological molecules like DNA, RNA, proteins, and metabolites. Methods: In the course of this review, we have adopted a focu-sed research strategy, meticulously selecting the most pertinent and emblematic articles related to the topic. Our methodology included a systematic examination of the scientific literature to guarantee a thorough and precise synthesis of the existing sources. Results: With the advent of high-throughput technologies, omics have become an essential tool for understanding the complexity of melanoma. In this article, we discuss the different omics approaches used in melanoma research, including genomics, transcriptomics, proteomics, and metabolomics. We also highlight the major findings and insights gained from these studies, including the identification of new therapeutic targets and the development of biomarkers for diagnosis and prognosis. Finally, we discuss the challenges and future directions in omics-based melanoma research, including the integration of multiple omics data and the development of personalized medicine approaches. Conclusions: Overall, this article emphasizes the importance of omics science in advancing our understanding of melanoma and its potential for improving patient outcomes
    • …
    corecore