1,729 research outputs found

    Disc galaxies with multiple triaxial structures. II. JHK surface photometry and numerical simulations

    Full text link
    We present detailed JHK surface photometry with ellipse fits of 13 galaxies selected from previous optical observations as likely candidates for having a secondary bar or a triaxial bulge within the primary bar. We have found 7 double-barred galaxies, 3 double-barred galaxies with an additional intermediate structure with twisted isophotes, and 3 galaxies with a bar and central twisted isophotes. A global analysis of the structural parameter characteristics in the I- and K-bands is presented. Various numerical models of galaxies with bars within bars are also analysed using the ellipse fitting technique and compared to the observations. A thorough review of the possible hypotheses able to explain this phenomenon is given with emphasis on the most likely ones.Comment: 12 pages, AATEX. Accepted for publication in A&A. Large color postscript figures omitted (Figs. 1), figures 2-9 included; gzip'ed postscript files of the paper and Figs. 1 available via anonymous ftp at ftp://obsftp.unige.ch/pub/fri/aasjhk/ , files fri_aasjhk.ps.gz and ngc*.ps.g

    Near-Infrared and Star-forming properties of Local Luminous Infrared Galaxies

    Get PDF
    We use HST NICMOS continuum and Pa-alpha observations to study the near-infrared and star-formation properties of a representative sample of 30 local (d ~ 35-75Mpc) luminous infrared galaxies (LIRGs, infrared 8-1000um luminosities of L_IR=11-11.9[Lsun]). The data provide spatial resolutions of 25-50pc and cover the central ~3.3-7.1kpc regions of these galaxies. About half of the LIRGs show compact (~1-2kpc) Pa-alpha emission with a high surface brightness in the form of nuclear emission, rings, and mini-spirals. The rest of the sample show Pa-alpha emission along the disk and the spiral arms extending over scales of 3-7kpc and larger. About half of the sample contains HII regions with H-alpha luminosities significantly higher than those observed in normal galaxies. There is a linear empirical relationship between the mid-IR 24um and hydrogen recombination (extinction-corrected Pa-alpha) luminosity for these LIRGs, and the HII regions in the central part of M51. This relation holds over more than four decades in luminosity suggesting that the mid-IR emission is a good tracer of the star formation rate (SFR). Analogous to the widely used relation between the SFR and total IR luminosity of Kennicutt (1998), we derive an empirical calibration of the SFR in terms of the monochromatic 24um luminosity that can be used for luminous, dusty galaxies.Comment: Accepted for publication in ApJ. Contact first author for high qualitity version of figure

    Extended Emission by Dust in the Dwarf Galaxy UGC 10445

    Get PDF
    We present Spitzer Space Telescope images of the isolated dwarf galaxy UGC 10445. The galaxy is detected at all photometric bands (3.6-160um) as well as in the Multiband Imaging Photometer for Spitzer (MIPS) spectral energy distribution mode (55-95um). We derive a star formation rate of 0.25 M_sun/yr based on H-alpha and infrared flux densities. There is over 10^6 solar masses of cold dust (T~18K) in the galaxy, represented by 160um emission, that extends to a larger radius than the ultraviolet (UV), optical and near-infrared light. Such extended emission has been seen previously only in dwarf galaxies in cluster environments. We suggest the source of heating for this dust is UV light originating in star forming complexes. To produce the large quantity of dust requires a higher rate of star formation in the past than is observed currently.Comment: 11 pages, 5 pages, accepted to ApJ, color high res figures available upon reques

    Neuronal assembly dynamics in supervised and unsupervised learning scenarios

    Get PDF
    The dynamic formation of groups of neurons—neuronal assemblies—is believed to mediate cognitive phenomena at many levels, but their detailed operation and mechanisms of interaction are still to be uncovered. One hypothesis suggests that synchronized oscillations underpin their formation and functioning, with a focus on the temporal structure of neuronal signals. In this context, we investigate neuronal assembly dynamics in two complementary scenarios: the first, a supervised spike pattern classification task, in which noisy variations of a collection of spikes have to be correctly labeled; the second, an unsupervised, minimally cognitive evolutionary robotics tasks, in which an evolved agent has to cope with multiple, possibly conflicting, objectives. In both cases, the more traditional dynamical analysis of the system’s variables is paired with information-theoretic techniques in order to get a broader picture of the ongoing interactions with and within the network. The neural network model is inspired by the Kuramoto model of coupled phase oscillators and allows one to fine-tune the network synchronization dynamics and assembly configuration. The experiments explore the computational power, redundancy, and generalization capability of neuronal circuits, demonstrating that performance depends nonlinearly on the number of assemblies and neurons in the network and showing that the framework can be exploited to generate minimally cognitive behaviors, with dynamic assembly formation accounting for varying degrees of stimuli modulation of the sensorimotor interactions

    The Nuclear Starburst in NGC 253

    Get PDF
    We have obtained long-slit spectra of NGC 253 in the J, H, K, and N bands, broadband images in the J, H, and Ks bands, narrowband images centered at the wavelengths of BrGamma and H2(1,0)S(1), and imaging spectroscopy centered on [NeII](12.8um). We use these data and data from the literature in a comprehensive re-assessment of the starburst in this galaxy. We derive the supernova rate from the strength of the infrared [FeII] lines. We find that most of the H2 infrared luminosity is excited by fluorescence in low density gas. We derive a strong upper limit of ~37,000K for the stars exciting the emission lines. We use velocity-resolved infrared spectra to determine the mass in the starburst region. Most of this mass appears to be locked up in the old, pre-existing stellar population. Using these constraints and others to build an evolutionary synthesis model, we find that the IMF originally derived to fit the starburst in M 82 (similar to a Salpeter IMF) also accounts for the properties of NGC 253. The models indicate that rapid massive star formation has been ongoing for 20-30 million years in NGC 253---that is, it is in a late phase of its starburst. We model the optical emission line spectrum expected from a late phase starburst and demonstrate that it reproduces the observed HII/weak-[OI] LINER characteristics.Comment: 48 pages, 14 figures, uses AASTeX macros, to appear in Ap

    Extremely Red Objects in The Lockman Hole

    Get PDF
    We investigate Extremely Red Objects (EROs) using near- and mid-infrared observations in five passbands (3.6 to 24 micron) obtained from the Spitzer Space Telescope, and deep ground-based R and K imaging. The great sensitivity of the IRAC camera allows us to detect 64 EROs in only 12 minutes of IRAC exposure time, by means of an R-[3.6] color cut (analogous to the traditional red R-K cut). A pure infrared K-[3.6] red cut detects a somewhat different population and may be more effective at selecting z > 1.3 EROs. We find 17% of all galaxies detected by IRAC at 3.6 or 4.5 micron to be EROs. These percentages rise to about 40% at 5.8 micron, and about 60% at 8.0 micron. We utilize the spectral bump at 1.6 micron to divide the EROs into broad redshift slices using only near-infrared colors (2.2/3.6/4.5 micron). We conclude that two-thirds of all EROs lie at redshift z > 1.3. Detections at 24 micron imply that at least 11% of 0.6 1.3 EROs are dusty star-forming galaxies.Comment: to appear in the special Spitzer issue of the ApJ

    Absolute Flux Calibration of the IRAC Instrument on the Spitzer Space Telescope using Hubble Space Telescope Flux Standards

    Get PDF
    The absolute flux calibration of the James Webb Space Telescope will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf (WD) stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3, 1.9, 2.0, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al. (2005), i.e. in agreement within their estimated errors of ~2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the SEDs of our standard stars. The independent IRAC 8 micron band-4 fluxes of Rieke et al. (2008) are about 1.5 +/- 2% higher than those of Reach et al. and are also in agreement with our 8 micron result.Comment: 16 pages, 6 figure

    The Mid-Infrared Instrument for the James Webb Space Telescope, V: Predicted Performance of the MIRI Coronagraphs

    Full text link
    The imaging channel on the Mid-Infrared Instrument (MIRI) is equipped with four coronagraphs that provide high contrast imaging capabilities for studying faint point sources and extended emission that would otherwise be overwhelmed by a bright point-source in its vicinity. Such bright sources might include stars that are orbited by exoplanets and circumstellar material, mass-loss envelopes around post-main-sequence stars, the near-nuclear environments in active galaxies, and the host galaxies of distant quasars. This paper describes the coronagraphic observing modes of MIRI, as well as performance estimates based on measurements of the MIRI flight model during cryo-vacuum testing. A brief outline of coronagraphic operations is also provided. Finally, simulated MIRI coronagraphic observations of a few astronomical targets are presented for illustration
    corecore