719 research outputs found

    Breakup of the aligned H2_2 molecule by xuv laser pulses: A time-dependent treatment in prolate spheroidal coordinates

    Full text link
    We have carried out calculations of the triple-differential cross section for one-photon double ionization of molecular hydrogen for a central photon energy of 7575~eV, using a fully {\it ab initio}, nonperturbative approach to solve the time-dependent \Schro equation in prolate spheroidal coordinates. The spatial coordinates ξ\xi and η\eta are discretized in a finite-element discrete-variable representation. The wave packet of the laser-driven two-electron system is propagated in time through an effective short iterative Lanczos method to simulate the double ionization of the hydrogen molecule. For both symmetric and asymmetric energy sharing, the present results agree to a satisfactory level with most earlier predictions for the absolute magnitude and the shape of the angular distributions. A notable exception, however, concerns the predictions of the recent time-independent calculations based on the exterior complex scaling method in prolate spheroidal coordinates [Phys.~Rev.~A~{\bf 82}, 023423 (2010)]. Extensive tests of the numerical implementation were performed, including the effect of truncating the Neumann expansion for the dielectronic interaction on the description of the initial bound state and the predicted cross sections. We observe that the dominant escape mode of the two photoelectrons dramatically depends upon the energy sharing. In the parallel geometry, when the ejected electrons are collected along the direction of the laser polarization axis, back-to-back escape is the dominant channel for strongly asymmetric energy sharing, while it is completely forbidden if the two electrons share the excess energy equally.Comment: 17 pages, 9 figure

    Asymptotic Spectroscopy of Rotating Black Holes

    Full text link
    We calculate analytically the transmission and reflection amplitudes for waves incident on a rotating black hole in d=4, analytically continued to asymptotically large, nearly imaginary frequency. These amplitudes determine the asymptotic resonant frequencies of the black hole, including quasinormal modes, total-transmission modes and total-reflection modes. We identify these modes with semiclassical bound states of a one-dimensional Schrodinger equation, localized along contours in the complexified r-plane which connect turning points of corresponding null geodesics. Each family of modes has a characteristic temperature and chemical potential. The relations between them provide hints about the microscopic description of the black hole in this asymptotic regime.Comment: References adde

    Thermal discomfort with cold extremities in relation to age, gender, and body mass index in a random sample of a Swiss urban population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this epidemiological study was to investigate the relationship of thermal discomfort with cold extremities (TDCE) to age, gender, and body mass index (BMI) in a Swiss urban population.</p> <p>Methods</p> <p>In a random population sample of Basel city, 2,800 subjects aged 20-40 years were asked to complete a questionnaire evaluating the extent of cold extremities. Values of cold extremities were based on questionnaire-derived scores. The correlation of age, gender, and BMI to TDCE was analyzed using multiple regression analysis.</p> <p>Results</p> <p>A total of 1,001 women (72.3% response rate) and 809 men (60% response rate) returned a completed questionnaire. Statistical analyses revealed the following findings: Younger subjects suffered more intensely from cold extremities than the elderly, and women suffered more than men (particularly younger women). Slimmer subjects suffered significantly more often from cold extremities than subjects with higher BMIs.</p> <p>Conclusions</p> <p>Thermal discomfort with cold extremities (a relevant symptom of primary vascular dysregulation) occurs at highest intensity in younger, slimmer women and at lowest intensity in elderly, stouter men.</p

    Solutions to Maxwell's Equations using Spheroidal Coordinates

    Full text link
    Analytical solutions to the wave equation in spheroidal coordinates in the short wavelength limit are considered. The asymptotic solutions for the radial function are significantly simplified, allowing scalar spheroidal wave functions to be defined in a form which is directly reminiscent of the Laguerre-Gaussian solutions to the paraxial wave equation in optics. Expressions for the Cartesian derivatives of the scalar spheroidal wave functions are derived, leading to a new set of vector solutions to Maxwell's equations. The results are an ideal starting point for calculations of corrections to the paraxial approximation

    Plasmonic Band-Pass Microfilters for LWIR Absorption Spectroscopy

    Get PDF
    Absorption spectroscopy in the long wave infrared provides an effective method for identification of various hazardous chemicals. We present a theoretical design for plasmonic band-pass filters that can be used to provide wavelength selectivity for uncooled microbolometer sensors. The microfilters consist of a pair of input reflection gratings that couple light into a plasmonic waveguide with a central resonant waveguide cavity. An output transmission grating on the other side of the structure pulls light out of the waveguide where it is detected by a closely spaced sensor. Fabrication of the filters can be performed using standard photolithography procedures. A spectral bandpass with a full-width at half-maximum (FWHM) of 100 nm can be obtained with a center wavelength spanning the entire 8–12 μm atmospheric transmission window by simple geometric scaling of only the lateral dimensions. This allows the simultaneous fabrication of all the wavelength filters needed for a full spectrometer on a chip

    Intermediate Asymptotics of the Kerr Quasinormal Spectrum

    Full text link
    We study analytically the quasinormal mode spectrum of near-extremal (rotating) Kerr black holes. We find an analytic expression for these black-hole resonances in terms of the black-hole physical parameters: its Bekenstein-Hawking temperature T_{BH} and its horizon's angular velocity \Omega, which is valid in the intermediate asymptotic regime 1<<\omega<<1/T_{BH}.Comment: 4 page
    • …
    corecore