473 research outputs found

    Potential overestimation of community respiration in the western Pacific boundary ocean : what causes the putative net heterotrophy in oligotrophic systems?

    Get PDF
    Microbial metabolism is of great importance in affecting the efficiency of biological pump and global carbon cycles. However, the metabolic state of the oligotrophic ocean, the largest biome on Earth, remains contentious. We examined the planktonic and bacterial metabolism using in vitro incubations along the western Pacific boundary during September and October 2016. The integrated gross primary production (GPP) of the photic zone exhibited higher values in the region of 2°–8°N along 130°E and the western Luzon Strait, which is consistent with the regional variability of nutrients in the different ocean provinces. Spatially, the community respiration (CR) was less variable than the GPP and slightly exceeded the GPP at most of the sampling stations. Overall, the in vitro incubation results suggest a prevailing heterotrophic state in this region. A comparison of the metabolic rates from the in vitro incubations with recently published biogeochemical model results in the same region shows that our observed GPP values were close to those predicted by the model, but the measured CR was approximately 30% higher than the modeled values. We also found that most of the in vitro CR estimates were higher than the upper range of the empirical CR estimated from the sum of the contributions of the main trophic groups. Conversely, the estimates of the empirical CR support the rationality of the CR predicted by the biogeochemical model. In general, the results indicate that systematic net heterotrophy is more likely a result of the overestimation of CR measured by the light–dark bottle incubation experiments, although the exact cause of the methodological problem remains unknown

    The Western English Channel contains a persistent microbial seed bank

    Get PDF
    Robust seasonal dynamics in microbial community composition have previously been observed in the English Channel L4 marine observatory. These could be explained either by seasonal changes in the taxa present at the L4 site, or by the continuous modulation of abundance of taxa within a persistent microbial community. To test these competing hypotheses, deep sequencing of 16S rRNA from one randomly selected time point to a depth of 10 729 927 reads was compared with an existing taxonomic survey data covering 6 years. When compared against the 6-year survey of 72 shallow sequenced time points, the deep sequenced time point maintained 95.4% of the combined shallow OTUs. Additionally, on average, 99.75%±0.06 (mean±s.d.) of the operational taxonomic units found in each shallow sequenced sample were also found in the single deep sequenced sample. This suggests that the vast majority of taxa identified in this ecosystem are always present, but just in different proportions that are predictable. Thus observed changes in community composition are actually variations in the relative abundance of taxa, not, as was previously believed, demonstrating extinction and recolonization of taxa in the ecosystem through time

    Community structures of actively growing bacteria shift along a north-south transect in the western North Pacific

    Get PDF
    Bacterial community structures and their activities in the ocean are tightly coupled with organic matter fluxes and thus control ocean biogeochemical cycles. Bromodeoxyuridine (BrdU), halogenated nucleoside and thymidine analogue, has been recently used to monitor actively growing bacteria (AGB) in natural environments. We labelled DNA of proliferating cells in seawater bacterial assemblages with BrdU and determined community structures of the bacteria that were possible key species in mediating biochemical reactions in the ocean. Surface seawater samples were collected along a north-south transect in the North Pacific in October 2003 and subjected to BrdU magnetic beads immunocapture and PCR-DGGE (BUMP-DGGE) analysis. Change of BrdU-incorporated community structures reflected the change of water masses along a north-south transect from subarctic to subtropical gyres in the North Pacific. We identified 25 bands referred to AGB as BrdU-incorporated phylotypes, belonging to Alphaproteobacteria (5 bands), Betaproteobacteria (1 band), Gammaproteobacteria (4 bands), Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria (5 bands), Gram-positive bacteria (6 bands), and Cyanobacteria (4 bands). BrdU-incorporated phylotypes belonging to Vibrionales, Alteromonadales and Gram-positive bacteria appeared only at sampling stations in a subtropical gyre, while those belonging to Roseobacter-related bacteria and CFB group bacteria appeared at the stations in both subarctic and subtropical gyres. Our result revealed phylogenetic affiliation of AGB and their dynamic change along with north-south environmental gradients in open oceans. Different species of AGB utilize different amount and kinds of substrates, which can affect the change of organic matter fluxes along transect

    Krill Excretion Boosts Microbial Activity in the Southern Ocean

    Get PDF
    Antarctic krill are known to release large amounts of inorganic and organic nutrients to the water column. Here we test the role of krill excretion of dissolved products in stimulating heterotrophic bacteria on the basis of three experiments where ammonium and organic excretory products released by krill were added to bacterial assemblages, free of grazers. Our results demonstrate that the addition of krill excretion products (but not of ammonium alone), at levels expected in krill swarms, greatly stimulates bacteria resulting in an order-of-magnitude increase in growth and production. Furthermore, they suggest that bacterial growth rate in the Southern Ocean is suppressed well below their potential by resource limitation. Enhanced bacterial activity in the presence of krill, which are major sources of DOC in the Southern Ocean, would further increase recycling processes associated with krill activity, resulting in highly efficient krill-bacterial recycling that should be conducive to stimulating periods of high primary productivity in the Southern Ocean.This research is a contribution to projects ICEPOS (REN2002-04165-CO3-O2) and ATOS (POL2006-00550/CTM), funded by the Spanish Ministry of Science and Innovation

    PAH mineralization and bacterial organotolerance in surface sediments of the Charleston Harbor estuary

    Get PDF
    Semi-volatile organic compounds (SVOCs) in estuarine waters can adversely affect biota but watershed sources can be difficult to identify because these compounds are transient. Natural bacterial assemblages may respond to chronic, episodic exposure to SVOCs through selection of more organotolerant bacterial communities. We measured bacterial production, organotolerance and polycyclic aromatic hydrocarbon (PAH) mineralization in Charleston Harbor and compared surface sediment from stations near a known, permitted SVOC outfall (pulp mill effluent) to that from more pristine stations. Naphthalene additions inhibited an average of 77% of bacterial metabolism in sediments from the more pristine site (Wando River). Production in sediments nearest the outfall was only inhibited an average of 9% and in some cases, was actually stimulated. In general, the stations with the highest rates of bacterial production also were among those with the highest rates of PAH mineralization. This suggests that the capacity to mineralize PAH carbon is a common feature amongst the bacterial assemblage in these estuarine sediments and could account for an average of 5.6% of bacterial carbon demand (in terms of production) in the summer, 3.3% in the spring (April) and only 1.2% in winter (December)

    Diversity and dynamics of rare and of resident bacterial populations in coastal sands

    Get PDF
    Coastal sands filter and accumulate organic and inorganic materials from the terrestrial and marine environment, and thus provide a high diversity of microbial niches. Sands of temperate climate zones represent a temporally and spatially highly dynamic marine environment characterized by strong physical mixing and seasonal variation. Yet little is known about the temporal fluctuations of resident and rare members of bacterial communities in this environment. By combining community fingerprinting via pyrosequencing of ribosomal genes with the characterization of multiple environmental parameters, we disentangled the effects of seasonality, environmental heterogeneity, sediment depth and biogeochemical gradients on the fluctuations of bacterial communities of marine sands. Surprisingly, only 3–5% of all bacterial types of a given depth zone were present at all times, but 50–80% of them belonged to the most abundant types in the data set. About 60–70% of the bacterial types consisted of tag sequences occurring only once over a period of 1 year. Most members of the rare biosphere did not become abundant at any time or at any sediment depth, but varied significantly with environmental parameters associated with nutritional stress. Despite the large proportion and turnover of rare organisms, the overall community patterns were driven by deterministic relationships associated with seasonal fluctuations in key biogeochemical parameters related to primary productivity. The maintenance of major biogeochemical functions throughout the observation period suggests that the small proportion of resident bacterial types in sands perform the key biogeochemical processes, with minimal effects from the rare fraction of the communities

    The Homeobox Protein CEH-23 Mediates Prolonged Longevity in Response to Impaired Mitochondrial Electron Transport Chain in C. elegans

    Get PDF
    Recent findings indicate that perturbations of the mitochondrial electron transport chain (METC) can cause extended longevity in evolutionarily diverse organisms. To uncover the molecular basis of how altered METC increases lifespan in C. elegans, we performed an RNAi screen and revealed that three predicted transcription factors are specifically required for the extended longevity of mitochondrial mutants. In particular, we demonstrated that the nuclear homeobox protein CEH-23 uniquely mediates the longevity but not the slow development, reduced brood size, or resistance to oxidative stress associated with mitochondrial mutations. Furthermore, we showed that ceh-23 expression levels are responsive to altered METC, and enforced overexpression of ceh-23 is sufficient to extend lifespan in wild-type background. Our data point to mitochondria-to-nucleus communications to be key for longevity determination and highlight CEH-23 as a novel longevity factor capable of responding to mitochondrial perturbations. These findings provide a new paradigm for how mitochondria impact aging and age-dependent diseases

    An evidence-based framework for predicting the impact of differing autotroph-heterotroph thermal sensitivities on consumer-prey dynamics

    Get PDF
    Increased temperature accelerates vital rates, influencing microbial population and wider ecosystem dynamics, for example, the predicted increases in cyanobacterial blooms associated with global warming. However, heterotrophic and mixotrophic protists, which are dominant grazers of microalgae, may be more thermally sensitive than autotrophs, and thus prey could be suppressed as temperature rises. Theoretical and meta-analyses have begun to address this issue, but an appropriate framework linking experimental data with theory is lacking. Using ecophysiological data to develop a novel model structure, we provide the first validation of this thermal sensitivity hypothesis: increased temperature improves the consumer’s ability to control the autotrophic prey. Specifically, the model accounts for temperature effects on auto- and mixotrophs and ingestion, growth and mortality rates, using an ecologically and economically important system (cyanobacteria grazed by a mixotrophic flagellate). Once established, we show the model to be a good predictor of temperature impacts on consumer–prey dynamics by comparing simulations with microcosm observations. Then, through simulations, we indicate our conclusions remain valid, even with large changes in bottom-up factors (prey growth and carrying capacity). In conclusion, we show that rising temperature could, counterintuitively, reduce the propensity for microalgal blooms to occur and, critically, provide a novel model framework for needed, continued assessment
    corecore