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Abstract 28 

 Microbial metabolism is of great importance in affecting the efficiency of biological 29 

pump and global carbon cycles. However, the metabolic state of the oligotrophic ocean, 30 

the largest biome on Earth, remains contentious. We examined the planktonic and 31 

bacterial metabolism using in vitro incubations along the western Pacific boundary 32 

during September and October 2016. The integrated gross primary production (GPP) of 33 

the photic zone exhibited higher values in the region of 2°-8°N along 130°E and the 34 

western Luzon Strait, which is consistent with the regional variability of nutrients in the 35 

different ocean provinces. Spatially, the community respiration (CR) was less variable 36 

than the GPP and slightly exceeded the GPP at most of the sampling stations. Overall, the 37 

in vitro incubation results suggest a prevailing heterotrophic state in this region. A 38 

comparison of the metabolic rates from the in vitro incubations with recently published 39 

biogeochemical model results in the same region shows that our observed GPP values 40 

were close to those predicted by the model, but the measured CR was approximately 30% 41 

higher than the modelled values. We also found that most of the in vitro CR estimates 42 

were higher than the upper range of the empirical CR estimated from the sum of the 43 

contributions of the main trophic groups. Conversely, the estimates of the empirical CR 44 

support the rationality of the CR predicted by the biogeochemical model. In general, the 45 

results indicate that systematic net heterotrophy is more likely a result of the 46 



overestimation of CR measured by the light-dark bottle incubation experiments, although 47 

the exact cause of the methodological problem remains unknown.  48 

  49 



Introduction 50 

 Biological carbon production and consumption are two important ecological 51 

processes in the marine system and contribute significantly to the global carbon cycles 52 

[Longhurst, 1995]. Marine phytoplankton are responsible for almost half of global 53 

primary production [Field et al., 1998]. Most of the organic carbon produced via 54 

photosynthesis is remineralized by heterotrophic organisms and released as dissolved 55 

inorganic carbon, and a tiny fraction of the particulate organic carbon is exported into the 56 

deep ocean, which is the so-called biological pump process [Sigman and Boyle, 2000]. 57 

The difference between the gross primary production (GPP) and community respiration 58 

(CR), termed net community production (NCP), should theoretically be equal to the 59 

amount of organic carbon available for potential export and thus is suggested to be one of 60 

the best descriptors of the role of biota in oceanic absorption or release of atmospheric 61 

CO2 [Ducklow and Doney, 2013; Giorgio et al., 2005]. Increasing amounts of evidence 62 

indicate that in addition to primary production, the variability and magnitude of 63 

heterotrophic respiration also play important roles in the emergence of the geographic 64 

patterns of NCP or export production [Aranguren-Gassis et al., 2011; Serret et al., 2015]. 65 

Therefore, accurate assessments of autotrophic and heterotrophic metabolism are required 66 

for a more comprehensive understanding of the efficiency of the biological pump at the 67 

global scale.  68 



 Over the last several decades, the metabolic state in the oligotrophic ocean has been 69 

actively debated in oceanography; the NCP signals derived from the in vitro incubation 70 

approach, typically using light-dark bottles, suggest a prevalence of heterotrophy in the 71 

oligotrophic ocean, which is in sharp contrast with the consistently positive NCP signals 72 

derived from incubation-free methods [C. M. Duarte et al., 2013; Ducklow and Doney, 73 

2013; P J L Williams et al., 2013]. The advantage of the incubation approach is that it 74 

allows us to estimate the integrated NCP from discrete depths and over 24 h, whereas 75 

most incubation-free techniques can only constrain the integrated rates at fixed depths, 76 

typically within the surface mixed layer. C. M. Duarte et al. [2013] compiled a global 77 

incubation-based dataset, and the scaling functions suggest that the open ocean, with 78 

values of GPP and chlorophyll-a (Chl-a) concentrations less than 2 mmol O2 m
-3 d-1 and 79 

0.44 mg m-3, respectively, tend to be systematically heterotrophic. In addition, Regaudie-80 

de-Gioux and Duarte [2012] examined the sensitivity of primary production and 81 

respiration to temperature, and the results implied higher activation energy of respiration 82 

(0.66 ± 0.05 eV) than primary production (0.32 ± 0.04 eV). The implication is that all 83 

other things being equal, the CR is likely to exceed the GPP in the tropical and 84 

subtropical ocean. However, the purported heterotrophy suggested by in vitro incubation 85 

remains questionable in part because the carbon deficit is difficult to sustain based on the 86 

current understanding of ocean carbon cycling [Ducklow and Doney, 2013; P J L 87 

Williams et al., 2013]. Recent improvements in understanding this controversy were 88 



attempted by Letscher and Moore [2017], who first included globally optimized 89 

dissolved organic carbon cycling into an ecosystem-circulation ocean model to assess the 90 

metabolic rates around the global ocean, which provides a powerful approach to validate 91 

the observations of the metabolic state from a geochemical perspective. 92 

 Bacteria play a vital role in the nutrient and organic cycle [Arrigo, 2005] and mediate 93 

the carbon transfer efficiency from lower to higher trophic levels through the microbial 94 

loop, which in turn influences the organic export [Azam et al., 1983; Jiao et al., 2010]. 95 

Bacterial respiration has been commonly considered to be the major part of CR. 96 

Especially in some unproductive marine ecosystems, bacterial respiration has been 97 

suggested to even exceed the net primary production [Del Giorgio et al., 1997]. 98 

However, this view was challenged by Calbet and Landry [2004], who argued that 99 

because microzooplankton consume a substantial proportion (-70%) of primary 100 

production, their contribution to CR must not be negligible. Thus, quantification of 101 

bacterial activity is critical for defining the metabolic balance. 102 

 The western Pacific Ocean is a particularly important region in regulating the global 103 

ocean circulation and climate system by the active exchange and transport of water, heat 104 

and salinity with adjacent tropical and subtropical oceans [Hu et al., 2015]. The currents 105 

in the epipelagic zone are complicated and mainly include the North Equatorial Current 106 

(NEC), North Equatorial Countercurrent (NECC), Subtropical Countercurrent (STCC), 107 



Kuroshio Current (KC) and Mindanao Current (MC) [Hu et al., 2015]. This area is a 108 

water-mass crossroads [Fine, 1994] and is also a typical tropical-subtropical oligotrophic 109 

environment that is characterized by very low Chl-a and nutrient concentrations in the 110 

upper ocean [G Yang et al., 2017c]. The present knowledge about this region is 111 

particularly focused on the hydrographic dynamics (see the review of Hu et al. [2015]), 112 

and the biological processes have been explored much less except for several reports on 113 

the geographic patterns of zooplankton distributions [G Yang et al., 2017b] and nitrogen 114 

fixation [Shiozaki et al., 2009]. The aim of this study is to determine the geographic 115 

pattern of planktonic and bacterial activity in the region of the still undersampled western 116 

Pacific boundary. Although incubation experiments using light-dark bottles are a 117 

straightforward and widely used method to measure metabolic rates in various 118 

environments, the different results in the oligotrophic ocean between this method and 119 

other incubation-free methods suggest that there might be a bias with this method, 120 

particularly in oligotrophic warm oceans [C. M. Duarte et al., 2013; P J L Williams et al., 121 

2013]. Of course, each methodology has its own assumptions and potential limitations. It 122 

is desirable to compare methods to reduce the uncertainty and enhance our understanding 123 

of the metabolic state of the oligotrophic ocean, which is the largest biome on Earth. 124 

Specifically, we compare our observational results with those of an excellent modelling 125 

study of the metabolism of the global ocean [Letscher and Moore, 2017]. We also try to 126 



estimate CR by summing the contributions of major trophic groups based on independent 127 

measurements and various conversion factors reported in the literature.  128 

Based on these arguments, we ask the following two sets of questions: 129 

 1. Can we observe the net heterotrophic state in the tropical-subtropical and oligotrophic 130 

western Pacific boundary using the in vitro incubation method following the scaling laws 131 

proposed by Duarte et al. (2013)? Will the results be consistent with the model results of 132 

Letscher and Moore (2017) and other estimates? If the answers are yes, then we should 133 

search for evidence of lateral transport of dissolved organic matter in this region. 134 

 2. If the estimated NCP rates differ between methodologies, what are the sources in 135 

terms of the GPP or CR that cause this discrepancy? In other words, what types of 136 

measurements are the most likely to be biased?  137 

 138 

Methods 139 

Study sites 140 

 The cruise was conducted in the western North Pacific Ocean along two transects at 141 

130°E (2°N- 20°N) and 20°N (120°E-132°E) from 7 September to 9 October, 2016, on 142 

RV “KEXUE” (Fig. 1). A total of 31 stations were investigated, and 11 stations were 143 

used for incubation experiments (red triangles in Fig. 1). The approximate fields of the 144 

main currents in the western North Pacific are shown in Fig. 1. 145 



 146 

Physical and chemical measurements    147 

 The water temperature and salinity at each station were measured using a Sea-Bird 148 

Electronics CTD SBE 911plus probe. The CTD probe was calibrated immediately before 149 

the cruise. To determine the concentrations of inorganic nitrate plus nitrite, ammonium 150 

and silicate and phosphate, 100 ml water samples were collected at 6-8 discrete depths 151 

from 0 to 300 m using 20 L Niskin metal-free bottles attached to the rosette of the CTD. 152 

The water samples were subsequently analyzed using a Skalar Flow Analyzer (Skalar 153 

Ltd., Netherland), and the data quality was estimated via inter-calibration. The depth of 154 

the nitracline was determined as the depth where the nitrate concentration reached 5 155 

mmol m-3. The nitrate gradient across the base of the euphotic zone at each station was 156 

calculated as an index of the potential availability of nutrients in the euphotic zone by 157 

vertical diffusion from the deeper layer.  158 

 159 

Biological measurements and in vitro oxygen-based metabolism  160 

 Seawater samples from five discrete depths, corresponding to 100%, 50%, 10%, and 161 

1% of the surface incident irradiance and the deep chlorophyll maximum (DCM), were 162 

collected at the incubation stations above 200 m water depth before dawn. If the depth of 163 

the DCM was coincident with the depth of 10% or 1% surface incident irradiance, an 164 



additional depth between the layers of 50% and 1% surface incident irradiances was 165 

sampled. The sampled water was transferred into 10 L acid-cleaned carboys using a 166 

silicone tube. One L of water was filtered onto a Whatman GF/F filter to measure the Ch-167 

a concentration. The Ch-a was extracted using 90% aqueous acetone in dark conditions 168 

for 12-20 h at 4°C and then measured by a Turner Trilogy fluorometer [Welschmeyer, 169 

1994]. 170 

 The planktonic community metabolic rates were estimated from the changes in 171 

dissolved oxygen concentrations in the light-dark bottles over a 24-hour incubation 172 

period following the procedure of Serret et al. [1999]. The dissolved oxygen 173 

concentrations were determined by high-precision Winkler titration [Huang et al., 2018; 174 

Oudot et al., 1988] with an automated potentiometric end-point detection system 175 

(Metrohm-848, Switzerland). For each depth, the water samples were carefully siphoned 176 

into twelve calibrated 100 ml borosilicate bottles using silicon tubing, with more than 300 177 

ml overflowing. Then, four replicate bottles were immediately fixed by the Winkler 178 

regents with MnCl2 (3 mol L-1) and NaI (4 mol L-1)/NaOH (8 mol L-1) to quantify the 179 

initial dissolved oxygen concentrations. The four light bottles were covered by neutral 180 

density meshes to adjust the light conditions to mimic the in situ irradiances of the 181 

corresponding sampling depths. The remaining quadruplicate bottles were placed inside 182 

dark bags as dark bottles. Both the light and dark bottles were incubated in a large tank 183 



on the deck filled with running seawater pumped from the surface ocean and exposed to 184 

natural sunlight. After the 24-hour incubation period, the dissolved oxygen 185 

concentrations in the bottles were determined. GPP was calculated as the difference 186 

between the average dissolved oxygen concentrations in the light and dark bottles, and 187 

CR was calculated as the difference between the average dissolved oxygen 188 

concentrations in the initial and dark bottles. NCP was equal to GPP-CR. The average 189 

percentage coefficients of variation (% ratio of the standard deviation to the mean) of the 190 

dissolved oxygen replicates were 0.15%, 0.17% and 0.17% for the initial, light and dark 191 

bottles, respectively. The complete data set will be deposited in the public global 192 

respiration database: https://www.uea.ac.uk/environmental-sciences/people/profile/carol-193 

robinson#researchTab (the dataset is maintained by Carol Robinson). 194 

 We noted that the on-deck incubation is subject to some problems such as changes of 195 

in situ light and temperature condition for the submarine samples during the incubation. 196 

The metabolic rates are temperature-dependent [López-Urrutia et al., 2006; Regaudie-de-197 

Gioux and Duarte, 2012]. The temperature in the incubator maintained by the running 198 

surface seawater would artificially elevate the in situ temperature conditions for the 199 

subsurface samples during the incubation. To minimize this effect, the metabolic rates 200 

below the surface were corrected by the activation energy of the GPP and CR reported by 201 

Regaudie-de-Gioux and Duarte 2012 (Supporting Information). It is also well known that 202 



the spectral characteristics of submarine light differ from those of surface light, featured 203 

with a higher fraction of blue light [Clarke and Oster, 1934]. The use of neutral density 204 

screen in our study well simulated the attenuation of submarine light intensity, but failed 205 

to simulate submarine spectral composition. Since the peak absorption bands of most 206 

algal pigments lie in the blue region of the visible light spectrum, the Chl-a specific 207 

absorption coefficient for the phytoplankton in the sub-surface ocean would be higher in 208 

the same intensity dominated by blue light than white light. A previous study of Edward 209 

A. Laws et al. [1990] showed that real primary production rates would be underestimated 210 

by a factor of two if incubations are performed using surface light attenuated with neutral 211 

density screen. In the present study, the sampling depths were identified as different 212 

gradients of broad-band surface light estimated by the depth-averaged attenuation 213 

coefficient of water column (Kmean). A study by Kyewalyanga et al. [1992] suggested that 214 

water-column primary production integrated from the sampling depths determined by 215 

Kmean was not significantly different from the real primary production. Their results 216 

indicated that light filed judged by Kmean gave higher light intensity at all depths 217 

compared to light intensity calculated using the spectral light value, then resulting in 218 

overestimating the in situ primary production. Thus, the negative bias due to the 219 

difference of spectral characteristics in the submarine would be partly compensated by 220 

the positive bias inherited from overestimated light intensity, leading to a final integrated 221 

value of primary production close to the real primary production. In the future study, 222 



more improvements are expected to accurately achieve ambient in situ light condition and 223 

reduce the uncertainty by using the neutral and blue density screening or the incubation 224 

buoy if possible.  225 

 226 

Bacterial production  227 

 Bacterial production (BP) was measured followed the protocols of 3H-lecine 228 

incorporation [Chen et al., 2014; Kirchman, 1993]. Four 1.8-mL aliquots of water were 229 

collected from each depth and added to 2-mL sterile microcentrifuge tubes (Axygen, Inc., 230 

USA), and they were incubated with a saturating concentration (10 nmol L–1) of 3H-231 

lecine (Perkin Elmer, USA) for 2 hours in the dark. One sample was immediately killed 232 

by adding 100% trichloroacetic acid (TCA) as a control, and the other three incubations 233 

were stopped by the addition of TCA at the end of the 2-hour incubation. Five vacuum 234 

cups filled with the seawater from the corresponding sampling depths were used as the 235 

incubators for BP to stimulate the in situ temperature during the 2-hour incubation. After 236 

the incubation, the water samples were filtered onto 0.2-µm polycarbonate filters (GE 237 

Water & Process Technologies, USA). The filters were rinsed twice with 3 mL of 5% 238 

TCA and twice with 2 mL of 80% ethanol before being frozen at -20°C. Upon return to 239 

the laboratory, the dried filters were placed in scintillation vials with 5 mL of Ultima 240 

Gold scintillation cocktail (Perkin-Elmer, USA). The radioactivity retained on the filters 241 



was measured as disintegrations per minute using a Tri-Carb 2800TR liquid scintillation 242 

counter (Perkin Elmer, USA). The rate of incorporation of 3H leucine was calculated 243 

from the difference between the treatment and control tubes.  244 

 Seven experiments were conducted to determine empirical factors to convert from 245 

the leucine incorporation rates to bacterial carbon production. Predator-free water was 246 

obtained by filtering seawater through 1 µm polycarbonate membrane filters and then 247 

diluted to 10% by 0.2 µm filtered seawater. The leucine incorporation rates and bacterial 248 

abundance were monitored every 4 to 6 hours for a maximum of 2 days. The cumulative 249 

method was used to derive the empirical conversion factor by linear regression of the 250 

bacterial number yields against the integrated leucine incorporation rates [Bjørnsen and 251 

Kuparinen, 1991]. The factor of 30.2 fg C cell-1 was applied to convert bacterial 252 

abundance to carbon biomass [Fukuda et al., 1998]. The conversion factors in our 253 

measurements varied from 0.20 to 0.91 kg C mol Leu-1, and we used the geometric mean 254 

value of 0.37 kg C mol Leu-1 to convert the incorporation of leucine to carbon units. 255 

 256 

Integrated metabolism rates derived from the biogeochemical ocean model  257 

 The model-based metabolism used in our study was based on the results derived 258 

from a recently published biogeochemical model in the same region [Letscher and 259 

Moore, 2017]. We chose this model because the organic carbon concentrations are well 260 



calibrated in the model. In Letscher and Moore [2017], three types of allochthonous 261 

organic carbon sources (contemporary rivers, atmospheric deposition and realistic semi-262 

labile and refractory marine dissolved organic carbon pool) were integrated into the 263 

Biogeochemical Elemental Cycling (BEC) v1.2.2 module of the Community Earth 264 

System Model (CESM). The model outputs include both GPP and CR within the euphotic 265 

zone, which allows us to directly compare them with our measured values from the light-266 

dark bottles. In addition, the physical forcing of the western Pacific boundary has been 267 

well resolved in the ecosystem-circulation model; therefore, we feel confident that the 268 

results in this region would be reasonable.  269 

 Briefly, the GPP in this model was computed from the phytoplankton nitrogen 270 

demand satisfied by nitrate, ammonium, and N2-fixation. CR was calculated as the sum 271 

of the carbon losses induced by the mortality of phytoplankton and zooplankton, 272 

phytoplankton grazed by zooplankton, and respiration of both particulate and dissolved 273 

organic carbon. Therefore, NCP is equal to GPP minus CR. The horizontal resolution of 274 

the model outputs is 1°× 1 ° with a higher resolution near the equator. The vertical 275 

resolution is 10 m in the upper 160 m. The daily volumetric metabolism (GPP and CR) 276 

from the model output is monthly climatology with 20-year averages (1946-2007) in 277 

units of mmol O2 m
-3 d-1. The integrated euphotic GPP and CR were calculated by 278 

trapezoidal integration of the volumetric data from the surface to the depth of 1% incident 279 



irradiance (typically 100-120 m in this study). Because our study was conducted between 280 

September and October, we compared our results with the model outputs for both 281 

September and October. The spatial variations of the euphotic zone integrated GPP and 282 

CR in this region are presented in Fig. S2. To conduct a paired comparison of the 283 

metabolism at each sampling station, we extracted the volumetric GPP and CR from the 284 

biogeochemical model in the corresponding grid cells within which our sampling stations 285 

were located. 286 

 287 

Estimates of the empirical CR from the contributions of different plankton groups  288 

 Because our measured GPP values are consistent with the model results from 289 

Letscher and Moore [2017] (see Results), we are confident in the GPP estimations in this 290 

area and attempt to estimate the respiration rates of major groups based on the GPPs and 291 

published growth efficiencies of corresponding groups to provide additional constraints 292 

on the CR [Morán et al., 2007; Robinson et al., 2002; Robinson and Williams, 2005]. 293 

Mesozooplankton are usually considered to be poorly sampled by in vitro procedures in 294 

small volumes (i.e., 100 ml in this study) because of their low abundances. Therefore, we 295 

assume that the major groups in our incubation system are composed of heterotrophic 296 

bacteria, phytoplankton (dominated by Prochlorococcus and Synechococcus) and 297 

microzooplankton. Considerable errors are associated with the estimates of each group, 298 

but importantly, the results showed that even under the conditions of the maximum 299 



possible contributions, it is still difficult to bridge the gap between the in vitro measured 300 

respiration and the estimated respiration. 301 

 For phytoplankton respiration, Carvalho et al. [2017] reported that the global new 302 

respiration (which is mainly contributed by phytoplankton) ranges from 10 to 30% of 303 

GPP and that the remainder of the respiration (namely, old respiration) is contributed by 304 

other groups, including phytoplankton. If phytoplankton account for part of the old 305 

respiration as well, the corresponding ratio of phytoplankton respiration to GPP would be 306 

similar to the published ratio (-35%) [Carlos M Duarte and Cebrián, 1996]. In a lab 307 

experiment, Marra and Barber [2004] observed that phytoplankton respired up to 40% of 308 

daylight primary production when exposed to 12:12 h light:dark conditions. Therefore, it 309 

is reasonable to constrain the possible range of phytoplankton respiration assuming a 310 

range of 15-40% of daily GPP. Based on a meta-analysis of grazing rates around the 311 

global ocean, Calbet and Landry [2004] suggested that approximately 50-60% of the 312 

GPP in the oligotrophic ocean is grazed by microzooplankton. The growth efficiency for 313 

proto- and metazooplankton is generally considered to be in the range of 50-70% based 314 

on allometric scaling of protistan growth and respiration rates (Fenchel and Findlay 1983) 315 

as well as direct assessments from protistan carbon budgets (e.g., Verity [1985]). We also 316 

compared three previously reported empirical functions that related the bacterial growth 317 

efficiency (BGE) to temperature [Rivkin and Legendre, 2001], Chl-a [López-Urrutia and 318 



Morán, 2007] and BP [Roland and Cole, 1999]. Irrespective of the different assumptions, 319 

the resulting values of these three BGEs in our study were strongly correlated and yielded 320 

average values of 7.41 ± 0.03% for the temperature-based BGE, 7.93 ± 0.02% for the 321 

Chl-a based BGE, and 9.09 ± 0.01% for the BP-based BGE (Table S1). These estimated 322 

BGEs are very similar to the in situ measured BGEs in the offshore stations of the North 323 

Atlantic, which have a mean value of 9% [Alonso-Sáez et al., 2007]. Another uncertainty 324 

associated with the estimation of the bacterial respiration is CF, which is a crucial 325 

parameter for estimating BP and the additional impact on the magnitude of the estimated 326 

respiration contributed by bacteria. Our measured CFs varied by a factor of 4.5 (0.2-0.9 327 

kg C mol Leu-1) with a mean value of 0.37 kg C mol Leu-1. Admittedly, applying a single 328 

mean value of the conversion factor to estimate BP might bias the estimate of bacterial 329 

respiration. 330 

 Based on the studies described above, we attempted to constrain the upper and lower 331 

boundaries of the empirical CR at the sampling stations (Table 1). To quantify the upper 332 

boundary of the empirical CR, we assumed the case with values of 40% of daily GPP 333 

respired by phytoplankton, 60% of daily GPP grazed by zooplankton, 50% zooplankton 334 

growth efficiency, 0.9 kg C mol Leu-1 of CF and 7.4% of BGE in this region. 335 

Correspondingly, we constrained the lower boundary of the empirical CR by assuming 336 

that 15% of daily GPP is respired by phytoplankton, 30% of daily GPP is grazed by 337 



zooplankton, the zooplankton growth efficiency is 70%, CF is 0.2 kg C mol Leu-1, and 338 

BGE is 9.1% in this region. 339 

Table 1. Estimates of the empirical community respiration contributed by major trophic 340 

groups. Details about the calculations are described in the text. Resp: respiration; GPP: 341 

gross primary production; BP: bacterial production; BGE: bacterial growth efficiency; 342 

CF: conversion factor. 343 

  344 

Trophic group  Definition  Methods References 

Phytoplankton Upper boundary 

Lower boundary 

Resp=0.34*GPP 

Resp=0.15*GPP 

Carvalho et al. (2017) 

Marra and Barber (2004) 

Duarte and Cebrián (1996) 

Microzooplankton Upper boundary 

Lower boundary 

Resp=0.65*0.7*GPP 

Resp=0.5*0.5*GPP 

 

Calbet and Landry (2004) 

Straile (1997); Fenchel and Findlay (1983); 

Verity (1985) 

Heterotrophic Bacteria Upper boundary 

Lower boundary 

Resp=(BP/0.07)-BP;(CF=0.90); 

Resp=(BP/0.09)-BP; (CF=0.2) 

López-Urrutia and Morán (2007); 

Rivkian et al. (2001); Roland and Cole (1999) 

 345 

Statistical analysis 346 

 The rates integrated over the euphotic zone were calculated by trapezoidal 347 

integration of the volumetric data from the surface to the depth of 1% incident irradiance. 348 

The standard errors for the integrated values were estimated by the propagation 349 

procedures for independent measurements described by Miller and Miller [1988]. We 350 

used a respiratory quotient of 1.2 to convert the carbon-based metabolism to an oxygen 351 

basis based on the assumption that inorganic nitrogen was released from organic matter 352 

in the form of ammonium [Hedges et al., 2002; Edward A Laws, 1991]. All GPP, CR, 353 



NCP and BP values are presented as mean values with standard error. The data were log-354 

transformed to satisfy the assumption of normality, which was confirmed (after 355 

transformation) via a Kolmogorov–Smirnov test. The correlations between the variables 356 

were examined by Pearson correlation. The linear regressions between the GPP and CR 357 

were conducted by reduced major axis regression analysis (model II linear regression) 358 

using the R software [Core, 2014]. The spatial variabilities of GPP and CR were 359 

evaluated by calculating the coefficient of variation (% ratio of the s.d. to the mean) of 360 

the integrated metabolism between the stations. The paired t-test was conducted to 361 

examine the difference between the metabolism rates at each sampling station derived 362 

from the O2-based incubation and the geochemical model predictions. The significance 363 

was satisfied if the type I error rate (p) was less than 0.05. Figs. 1 and 2 were plotted 364 

using the Ocean Data View software [Schlitzer, 2012].  365 

 366 

Results 367 

Physical parameters and biochemical characterizations of the two transects 368 



 369 

Figure 2. Temperature-salinity diagrams (upper 300 m of water) of the sampling stations 370 

in the western Pacific Ocean. Black contours indicate σθ (units: potential density-1000 kg 371 

m-3). Different colors represent different stations. 372 

 The characteristics of the potential temperature and salinity in the upper 300 m for 373 

each station are shown in Fig. 2. In this region, the water masses were relatively 374 

complicated due to the interactive influences of different currents. In the southernmost 375 

stations (St. 29-31), we observed higher salinity (>35.25) at 200-300 m (Fig. 2a). This 376 

high salinity water originated from the South Pacific Tropical Water (SPTW) and was 377 

carried by the New Guinea Coastal Current (NGCC) and the New Guinea Coastal 378 

Undercurrent (NGCUC) from the South Pacific (Qu et al. 1999; Zhou et al. 2010). At St. 379 

17-28, the upper water masses were mainly influenced by the typical NPTW and were 380 

characterized by salinities slightly lower (34.75<S<35.25) than the SPTW (Fig. 2b and 381 

2°N-8°N, 130°E 8°N-13°N, 130°E

13°N-20°N, 130°E 20°N, 118°E -130°E



2c; Fine 1994; Qu et al. 1999). St. 14-16 were located along the boundary between the 382 

NEC and the STCC, where energetic meso-scale eddies were very active, and the water 383 

masses in this region have both tropical and subtropical gyre characteristics (Fig. 2c). On 384 

the transect along 20°N, the water masses at St. 5-9 were dominated by the Kuroshio 385 

water, which featured higher salinity and temperature than the water in the adjacent South 386 

China Sea (Fig. 2d). At St. 3-4, the upper water was a mixture of relatively fresh and cold 387 

water from the South China Sea and saltier and warmer water from the intrusion of the 388 

KC at depths of 200-300 m (Fig. 2d). 389 

 The main hydrographic features along the two transects are shown in Fig. 3. The 390 

water along the 130°E transect was characterized by high surface temperatures with a 391 

mean value of 29.8 ± 0.2°C. The surface salinity along this transect generally increased 392 

from 33.8 at the southernmost station (31) to 34.4 at St. 14. On the transect along 20°N, 393 

the temperature and salinity exhibited a westward trend toward colder and less saline 394 

waters. The average surface temperature along the 20°N transect (28 .4 ± 0.2°C) was 395 

slightly lower than that along the 130°E transect. The lowest salinity along the 20°N 396 

transect was observed at the westernmost station (St. 4).  397 



 398 

Figure 3. Vertical distributions of temperature, salinity, nitrate and chlorophyll-a on the 399 

south-north transect along 130°E and the west-east transect along 20°N. The white 400 

dashed and white solid lines represent the bottom of the euphotic zone and the depth of 401 

the nitracline, respectively. The numbers above the figures indicate the sampling stations. 402 

 403 

 The depths of the euphotic zone in the two transects (white lines in Fig. 3) were 404 

generally at approximately 100-150 m. Along the 130°E transect, the nitrate conditions 405 

showed higher concentrations and a shallower depth of the nitracline at 2°-8°N (white 406 

dashed lines in Fig. 3e). In the 20°N transect, the lowest average nitrate concentration 407 

(0.87 ± 0.37 μmol L-1) in the upper 300 m was found in the region of the eastern Luzon 408 
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Strait. The patterns of NH4
+, PO4

3-, and SiO3
2- generally followed the trend of the nitrate 409 

concentrations in the water masses (Yu et al., unpublished data).  410 

 The Chl-a concentrations at the incubation stations are shown in Figs. 3e and 3f. 411 

Along the 130°E transect, the surface Chl-a concentrations were lower in the surface 412 

water (<0.25 mg m-3), except for the presence of high values at the surface at St. 27. A 413 

well-developed deep Chl-a maximum (DCM) was observed at the base of the euphotic 414 

zone. The Chl-a concentrations at the DCM decreased to the north from 1 mg m-3 at St. 415 

31 to less than 0.5 mg m-3 at St. 15. Along the 20°N transect, shallower DCMs were 416 

observed at approximately 50 m in the region of the eastern Luzon Strait compared to the 417 

stations to the west.  418 

 419 

Plankton community metabolism along the two transects 420 

    Along the 130°E transect, the volumetric GPP ranged between 0.1 mmol O2 m
-3 d-1 421 

and 1.2 mmol O2 m
-3 d-1 and generally decreased with depth (Fig. 4a). Higher volumetric 422 

GPPs were found in the region of 2°-8°N (St. 25-St. 31) and were associated with high 423 

nitrate and Chl-a concentrations. The range of volumetric CRs was similar to that of the 424 

volumetric GPP, and the highest volumetric CR was located at the surface at St. 31 (Fig. 425 

4b). The vertical gradient of CR was relatively homogenous along this transect (Fig. 4b). 426 

The volumetric NCP varied from -0.6 mmol O2 m
-3 d-1 at the surface at St. 20 to 0.4 427 



mmol O2 m
-3 d-1 at 70 m at St. 31 (Fig. 4c). Positive volumetric NCPs were mainly 428 

located in some surface and subsurface waters at low latitudes (St. 25-31; Fig. 4c). In 429 

terms of the euphotic zone integrated metabolism, the integrated GPP generally decreased 430 

to the north with higher values in the region of 2°-8°N (Fig. 5a). The spatial variation of 431 

the integrated CR had a similar pattern to that of the GPP although with a smaller 432 

amplitude (Fig. 5b). The O2 integrated NCPs at St. 31 and St. 29 were close to zero, 433 

whereas a persistent net heterotrophic state was found from 5°N to 20°N (Fig. 5c).  434 

 435 

 436 

Figure 4. Vertical distributions of volumetric gross primary production (GPP), 437 

community respiration (CR), net community production (NCP) and bacterial production 438 

(BP) along two transects (130°E and 20°N) in the western Pacific Ocean. The numbers 439 

above the figures indicate the sampling stations. 440 
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 For the 20°N transect, the maximum volumetric GPP (2.3 mmol O2 m
-3 d-1) was 441 

coincident with the occurrence of the maximum volumetric CR (2.1 mmol O2 m
-3 d-1) at 442 

the surface at St. 4 (Fig. 4e), where the waters were mixed by relatively nutrient-rich 443 

seawater from the adjacent South China Sea. At St. 6 and St. 9, which were affected by 444 

the oligotrophic KC, the volumetric GPP decreased to very low values, whereas the 445 

volumetric CR remained at intermediate values (Fig. 4e and 4f). As a result, positive 446 

volumetric NCP was observed throughout the water column at St. 4, and negative NCP 447 

was observed at St. 6 and St. 9 (Fig. 4g). The euphotic zone integrated GPP decreased to 448 

the east along this transect from 122 mmol O2 m
-2 d-1 at the westernmost station to 13 449 

mmol O2 m
-2 d-1 at the easternmost station (Fig. 5a). The range of the euphotic zone 450 

integrated CR in this transect was only one-third of the GPP, ranging from 66 mmol O2 451 

m-2 d-1 at St. 9 to 96 mmol O2 m
-2 d-1 at St. 4 (Fig. 5b). The integrated NCP showed 452 

pronounced shifts from a net autotrophic state at St. 4 to heterotrophic at St. 6 and 9 (Fig. 453 

5c).  454 

 455 



 456 

Figure 5. Spatial variations of integrated (a) gross primary production (GPP) and 457 

community respiration (CR), (b) net community production (NCP), and (c) bacterial 458 

production (BP) along the north-south transect at 130°E and the east-west transect at 459 

20°N in the western Pacific Ocean. The error bars represent the standard errors of the 460 

measurements.  461 

 462 
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Figure 6. (a) Pearson correlation between integrated gross primary production (GPP) and 464 

integrated Chl-a. (b) Pearson correlation between integrated gross primary production 465 

(GPP) and average nitrate concentration in the upper 300 m. (c) Regression between 466 

volumetric GPP and community respiration (CR). (d) Regression between integrated GPP 467 

and CR in the western Pacific Ocean.468 



469 



Table 2. Pearson correlations of the integrated metabolic rates with environmental variables (n = 11). The p values are shown in the brackets. 470 

The significant relationships are shown in bold (p < 0.05). ∫ GPP: gross primary production. ∫ CR: community respiration. ∫ NCP: net community 471 

production. ∫ BP: integrated bacterial production rate. SST: surface temperature. SS: surface salinity. ∫ Chl-a: integrated chlorophyll a.  472 

 473 

 ∫Chl-a Surface Chl-a SST SS Nitrate 

gradient  

∫CR ∫NCP ∫BP 

         

∫ GPP 0.73 (0.011) 0.41 (0.212) 0.08 (0.819) -0.68 (0.020) 0.75 (0.002) 0.70 (0.015) 0.72 (0.013) 0.63 (0.064) 

∫ CR 0.47 (0.148) 0.41 (0.216) 0.23 (0.497) -0.25 (0.461) 0.31 (0.351)  0.01 (0.968) 0.14 (0.679) 

∫ NCP 0.57 (0.066) 0.14 (0.678) -0.11 (0.750) -0.72 (0.012) 0.70 (0.013)   0.41 (0.208) 

∫ BP 0.30 (0.372) -0.01 (0.995) -0.43 (0.186) -0.41 (0.215) -0.11 (0.742)  

 

  

474 



 In general, the pooled dataset for these two transects suggests that the spatial 

variation of GPP was greater than that of CR, which is reflected by the larger 

coefficient of variation of the integrated GPP (52%) than that of CR (27%). The 

euphotic zone integrated GPP was positively correlated with the integrated Chl-a (r = 

0.76, p = 0.011; Table 2, Fig. 6a) and the nitrate gradient across the base of the 

euphotic zone (r = 0.70, p = 0.001; Table 2, Fig. 6b). The CR can be regressed to GPP 

using the equations CR = 1.15 * GPP0.74 (r2 = 0.53, p < 0.001; Fig. 6c) for the 

volumetric values and CR = 11.74 * GPP0.48 (r2 = 0.50 p =0.03; Fig. 6d) for the 

integrated values. The slopes of the equations for GPP and CR indicate that the CR 

rates were slightly higher than the GPP; therefore, negative NCP prevailed at most of 

the stations. Based on the relationship between the GPP and CR, the thresholds of the 

euphotic zone integrated and volumetric GPP (below which the system is net 

heterotrophic) were 110 mmol O2 m
-2 d-1 and 1.7 mmol O2 m

-3 d-1, respectively.  

 

Bacterial production 

 Along the 130°E transect, the volumetric BP varied between 0.01 mg C m-3 d-1 

and 0.076 mg C m-3 d-1 with a mean value of 0.056 mg C m-3 d-1 (Fig. 4d). We 

observed maxima of the volumetric BP in the intermediate layer along this transect 

(Fig. 4d). Along the 20°N transect, the volumetric BP at the eastern stations tended to 

be lower than those at the western stations (Fig. 4h). The maximum volumetric BP of 

0.53 mg C m-3 d-1 was found at the surface at St. 4, which was consistent with the 

maximum volumetric GPP and CR (Fig. 4h). In terms of depth-integrated values, the 



integrated BP did not show a pronounced spatial pattern in either the latitudinal or 

meridional transects (Fig. 5c). Except for the two peak values at St. 31 and St. 4, the 

integrated BPs along the two transects were both relatively constant and had 

intermediate values (Fig. 5c). The correlation between the integrated GPP and BP for 

the pooled dataset of the two transects was insignificant (Pearson p = 0.06). 

 

Comparison of metabolism estimates derived from the in vitro incubations, 

geochemical model and empirical estimation  

 A comparison of the integrated metabolism derived from the in vitro incubations 

and the geochemical model along the two transects is presented in Fig. 7. In general, 

the model of Letscher and Moore [2017] predicted moderate autotrophy in this region 

during September and October, with an average NCP of 7 mmol O2 m
-2 d-1 (Fig. 7a). 

By contrast, our measurements indicated a prevalence of net heterotrophic conditions 

in this region (Fig. 7a). Similar to our field observations of higher metabolism rates at 

low latitudes, the GPPs predicted from the geochemical model had slightly higher 

values at the low latitude stations, although the spatial variability was less pronounced 

than our field observations (Fig. 7b) The GPPs estimated from the geochemical model 

along the two transects ranged from 42 mmol O2 m
-2 d-1 to 67 mmol O2 m

-2 d-1, 

yielding no statistical differences with the GPPs measured by O2-based incubation (p 

= 0.90 for the model output in September and p = 0.86 for the model output in 

October, paired t-test; Fig. 8b). However, our field-observed CRs were statistically 

higher than those predicted by the geochemical model during September (paired t-

test, p < 0.001) and October (paired t-test, p < 0.001; Fig. 8c).   



 

Figure 7. Comparison between the integrated metabolism at each sampling station 

derived from O2-based incubation and the geochemical model of Letscher and Moore 

(2017). GPP: gross primary production; CR: community respiration; NCP: net 

community production.  

 The comparison of the CRs from the empirical estimates and the oxygen-based 

incubation approach showed that at 8 of the 11 stations, the measured CR exceeded 

the upper boundary of the empirical CR estimates, leaving a mean of 24 mmol O2 m
-2 

d-1 of respiration unaccounted for in this region (Fig. 8). Conversely, most of the CRs 

predicted by the biogeochemical model of Letscher and Moore [2017] fell within the 

range of values derived from the empirical estimations (Fig. 8).  
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Figure 8. Comparison of the community respirations (CRs) derived from O2-based 

incubation, empirical estimates and the geochemical model of Letscher and Moore 

[2017]. 

 

Figure S2. The integrated metabolism in the western Pacific Ocean within the 

euphotic zone during September and October derived from the biogeochemical model 

of Letscher and Moore (2017). GPP: gross primary production; CR: community 

respiration; NCP: net community production.  

 

Discussion  

 The limited and uneven geographic distributions of the measured metabolic rates 

in the global ocean and reconciling the results of the metabolic balance derived from 

the incubation approach and the biochemical budget in a meaningful way remain 

major obstacles to a comprehensive understanding of the trophic status in the 

oligotrophic ocean [Ducklow and Doney, 2013; Westberry et al., 2012]. This study 

contributes to the currently limited dataset in the western boundary currents of the 
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North Pacific Ocean and, and more broadly, adds insight into the unresolved debate 

about the autotrophy versus heterotrophy in the oligotrophic ocean.  

Discrepancy of the regional metabolic state between the incubation and 

geochemical model predictions  

 The comparisons between the regional metabolic rates from the incubation 

approach and the model outputs address our first question. As we expected, the 

observations based on the oxygen changes during incubation exhibited a prevalence 

of net heterotrophic states in the warm and oligotrophic western Pacific Ocean. More 

than 80% of the volumetric NCP values were negative (Fig. 4c and 4g), and 8 of the 

11 stations showed net heterotrophic states integrated over the entire water column 

(Fig. 5c). In this region, the environmental conditions feature high surface 

temperatures (>28 °C) and very low nutrient availability in the upper layers (Fig. 3). 

The mean Chl-a and volumetric GPP were only approximately 0.14 mg m-3 and 1.6 

mmol O2 m
-3 d-1, respectively, which fall into the conditions for a heterotrophic state 

according to the scaling laws proposed by C. M. Duarte et al. [2013].  

 However, the model of Letscher and Moore [2017] predicted a moderately 

autotrophic state in the western Pacific Ocean (Fig. 7a), which supports the metabolic 

state in the oligotrophic ocean that has been diagnosed by incubation-free methods in 

many previous studies [Emerson, 2014; B Yang et al., 2017a]. Further comparisons of 

GPP and CR imply that our measured GPP values were consistent with the 

geochemistry-based values, but there was an apparent anomaly in the CR between 



these two approaches (Fig. 7b and 7c). At the global scale, the validity of gross O2 

production rates has been tested in numerous studies by comparing concurrent 

measurements of primary production determined from 14C incorporation [Bender et 

al., 1999; Grande et al., 1989; Michael et al., 1987]. These results suggest that the 

GPP measured from in vitro O2 change incubation generally tracks the distributions of 

14C-based primary production and could represent the true rates of autotrophic 

production. In this study, our measured GPPs were consistent with the changes in 

nutrient availability and Chl-a concentrations at regional scales (Fig. 6a and 6b). In 

the broader Pacific Ocean, our regional mean GPP values (59.8 ± 8.7 mmol O2 m
-2 d-

1) were similar to the primary production in the central gyre of the North Pacific, 

which has similarly oligotrophic conditions (61 ± 5.9 mmol O2 m
-2 d-1,P J L B 

Williams et al. [2004]), but were significantly lower than the corresponding rates 

previously reported in the eastern equatorial Pacific (211 ± 64 mmol O2 m
-2 d-1; 

Wambeke et al. [2008]) and western subarctic Pacific (78 ± 24 mmol O2 m
-2 d-1; 

Furuya [1995]), as determined by similar approaches. This latitudinal tendency of the 

GPP reflected by oxygen-based incubation is consistent with the current knowledge of 

higher nutrient availability in the colder and well-mixed Arctic water and the 

widespread occurrence of upwelling systems in the equatorial ocean, which adds 

further evidence of the rationality of GPP measurements at both regional and 

latitudinal scales.   

 In contrast to the consistency of the GPP between the incubation and 

biogeochemical model outputs, most of the CRs derived from the incubation approach 



exceeded the model predictions (Fig. 7c). In addition to the locally produced organic 

carbon, the model simulation of Letscher and Moore [2017] explicitly included the 

fluxes of semi-labile organic carbon and the lateral supply of allochthonous and 

terrigenous organic carbon, which are considered a key pathway to fuel the respiration 

if the prevalent heterotrophy is real. The apparent CR anomaly implies that in vitro 

estimates of CR are difficult to reconcile from the perspective of biogeochemical 

cycles. Unlike primary production, for which several independent incubation 

approaches (i.e., 14C-based incorporation rates) can be used to constrain the global 

magnitude and trends, it appears that there is no comparable incubation approach to 

directly measure the CR except for the oxygen consumption in dark bottles. Similar to 

many previous studies that showed the relative constancy of the geographical patterns 

of CR [Aranguren-Gassis et al., 2011; Morán et al., 2004; Wang et al., 2014], our 

depth-integrated CRs tended to be less variable than the GPPs, which casts further 

doubt on the accuracy of CR measurements.  

  

Reconciling the signal of community respiration determined by the incubation 

 The comparison between the incubation results and model outputs appears to 

support our GPP measurements, but it leaves some doubts about the magnitude of the 

in vitro CR. To further validate the CR between the model output and incubation 

approach, we performed another independent estimate of the respiration contributed 

by the major trophic groups of plankton at each station (Table 1) with the goal of 

constraining the possible CR based on the magnitude of the measured GPP and BP. 



Heterotrophic bacteria have long been considered to perform most of the respiration 

in the open ocean; therefore, individual measurements of BP are also a key factor 

influencing the magnitudes of our empirical CR estimates. The average rates of BP in 

our study region were at the low end of previously reported values in the Pacific 

systems and other oligotrophic systems (Table 3). The calculated BP requires a 

conversion factor to transform the leucine incorporation rates into carbon production. 

Low leucine incorporation rates are typically found in oligotrophic, subtropical 

waters, and our measured leucine incorporation rates were comparable with the values 

in the oligotrophic ocean in ALOHA [Viviani and Church, 2017]. Therefore, the 

major possible cause of low BP might be related to the conversion factor of leucine to 

carbon. In many previous studies, an empirical value of the leucine-to-carbon 

conversion factor (i.e., 1.5 kg C mol leu-1) was used assuming no isotopic dilution 

[Kirchman, 1993]. Growing experimental evidence suggests that CF depends in part 

on the composition of the substrates and the nutrient status and that it decreases 

markedly from the coastal areas to the open ocean [Alonso-Sáez et al., 2007; Zubkov 

et al., 2000b]. Our measured CF values (average of 0.37 kg C mol Leu-1) are well 

within the range of measured CFs in the oligotrophic system [Alonso-Sáez et al., 

2007; Vázquez-Domínguez et al., 2008; Zubkov et al., 2000b], which further indicates 

that the application of theoretical values of CF may potentially overestimate the 

bacterial activity in the oligotrophic ocean.  

 

 



Table 3. Review of euphotic zone integrated bacterial metabolism (mean ± standard 

error) in the Pacific Ocean, adjacent ocean and subtropical oceans. 

Region Leu incorporation Leu CF Bacterial Production References 

 pmol m-2 h-1 Kg C mol-1 leu        mg C m-2 d-1  

   Northern Pacific gyre  739 ± 140 1.5 27 ± 2.1 Viviani and Church [2017] 

Eastern South Pacific 4360 ± 1200 1.5 160 ± 46 Wambeke et al. [2008] 

Western subarctic Pacific 1572 ± 740 1.06 40 ± 14 Sherry et al. [2002] 

Northern South China Sea 3941 ± 1200 0.37 35 ± 7.2 Wang et al. [2014] 

Northern Atlantic gyre 958 ± 123 0.73 17 ± 2.3 Morán et al. (2007) 

Western Pacific boundary 627 ± 260  0.37 5.6 ± 1.2 This study 

 

 We found that an appreciable amount of measured CR could not be completely 

explained by the sum of the independent assessments of the different trophic groups at 

most of the stations (Fig. 8). Although considerable errors are associated with the CR 

estimates for each group, the results showed that even under the conditions of the 

maximum possible contribution, it is still difficult to bridge the gap between the in 

vitro measured respiration and the estimated respiration. Interestingly, most of the 

CRs predicted by the geochemical model fell within the possible range of the 

empirically estimated CRs, which in turn provides cross-validation of the rationality 



of the CR predicted by the geochemical model (Fig. 8). This analysis thus reveals that 

in vitro measurements of CR, rather than GPP measurements, are most likely 

responsible for the observation of net heterotrophy in this area. A similar finding was 

reported by Morán et al. [2007], who demonstrated that in the North Atlantic gyre, 

approximately 48% of the measured CR from changes in oxygen in dark bottles could 

not be explained by the contributions of trophic groups of plankton. The author 

related this discrepancy to the fundamental flaw associated with long-term dark 

incubation (24 h) in an enclosed system. Several previous studies highlighted the diel 

synchrony of the growth of photosynthetic prokaryotes in cultures and the ocean 

[Jacquet et al., 2001; Zubkov et al., 2000a]. Long-term dark incubation might disrupt 

the diel synchrony of the dominant community of picoplankton. In spite of the still 

unclear consequences of this effect, it is likely that rapid disruption of the diel 

synchrony would lead to an elevation of the metabolic cost (i.e., respiration) for 

picoplankton under stress. Increases in bacterial abundances and substrate 

assimilation rates during bottle incubation have been revealed due to the exclusion of 

large zooplankton that feed on microheterotrophs, especially in oligotrophic systems 

characterized by tightly coupled microbial communities [Evelyn et al., 1999; Pomeroy 

et al., 1994]. This effect of eliminating large predators in respiration measurements 

would be more apparent in the size-fraction incubation when >1 µm organisms were 

removed, yielding a 50% overestimation of respiration in the bottle [Aranguren-

Gassis et al., 2012]. In addition, “new surfaces” for bacterial attachment in the 

container may be favorable for the growth of attached bacteria, enhancing respiration 



during bottle incubation. However, the precise mechanism of the overestimation of 

CR by in vitro incubations is beyond the scope of our current data. A useful caveat of 

our study might be a request to further check the possible methodological problem, 

especially that associated with dark incubation. 

Conclusion 

 This study is the first to report plankton community and bacterial metabolism on 

the western boundary of the northern Pacific Ocean based on in vitro incubation. The 

combination of analyses across different approaches allows us to enhance our 

understanding of the metabolic state of the oligotrophic ocean, particularly in the 

interpretation of net heterotrophy determined from light-dark bottles. Our comparison 

with the biogeochemical model and the contributions of major plankton groups 

suggests that the negative NCP may stem from systematically overestimated in vitro 

measured CR, although the exact cause of the problem is unresolved and requires 

further study. 
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