37 research outputs found
Municipal Liability: Refusal to Impute Punitive Damages to a Municipal Corporation for the Intentional Tort of an Employee
Williams v. City of New York, 508 F.2d 356 (2d Cir. 1974).
In Williams v. City of New York the Second Circuit Court of Appeals denied an award of exemplary damages in a suit for malicious prosecution citing as authority numerous New York state cases. New York\u27s common law has refused to award punitive damages against a municipal corporation. Samuel Tito Williams was arrested in 1947 and accused in the murder of a young black girl. Williams\u27 guilt was established at trial almost solely by the admission of a confession obtained in a lengthy police custodial interrogation. The jury necessarily found in convicting him of murder that his confession was voluntarily given
Exclusionary Zoning: An Appraisal of Residential Restrictive Zoning
South Burlington N.A.A.C.P. v. Mount Laural Township, 67 N.J. 151, 336 A.2d 713 (1975).
Mount Laural Township, New Jersey, is a relatively small suburban community located near the metropolitan area of Camden, New Jersey and just ten miles from Philadelphia. Despite this close proximity to these densely populated urban centers, Mount Laural has managed to avoid the crushing urban rush to this now mainly residential community. The somewhat sobering decision of South Burlington N.A.A.C.P. v. Township of Mount Laural awakened this suburban society to its metropolitan surroundings. In the Mount Laural decision, the Supreme Court of New Jersey dealt with the issue of whether a developing municipality may validly, by a system of land use regulations, make it physically and economically impossible for those of low and moderate income to share in the suburban life
Global Roughness Texture of the Moon and Mars
Statistical measures of patterns (textures) in surface roughness are used to quantitatively differentiate regional geomorphic units on the Moon and Mars (e.g. cratered highlands, volcanic terrains and planar lowlands). The existence of vastly distinct crustal types on Mars and the Moon is well established [e.g. 1, 2, 3, & 4]. Here, a new methodology developed for differentiating terrestrial volcanic deposits using ~1 m resolution topography data [5], is tested on two global data sets where roughness pixels are much larger (1/4 of a degree)
Monte Carlo Radiative Transfer
I outline methods for calculating the solution of Monte Carlo Radiative
Transfer (MCRT) in scattering, absorption and emission processes of dust and
gas, including polarization. I provide a bibliography of relevant papers on
methods with astrophysical applications.Comment: To appear in the Chandra Centennial issue of the Bulletin of the
Astronomical Society of India, volume 39 (2011), eds D.J. Saikia and Virginia
Trimble; 27 pages, 1 figur
Scientific Hybrid Realtiy Environments (SHyRE): Bringing Field Work into the Laboratory
The use of analog environments in preparing for future planetary surface exploration is key in ensuring we both understand the processes shaping other planetary surfaces as well as develop the technology, systems, and concepts of operations necessary to operate in these geologic environments. While conducting fieldwork and testing technology in relevant terrestrial field environments is crucial in this development, it is often the case that operational testing requires a time-intensive iterative process that is hampered by the rigorous conditions (e.g. terrain, weather, location, etc.) found in most field environments. Additionally, field deployments can be costly and must be scheduled months in advance, therefore limiting the testing opportunities required to investigate and compare science operational concepts to only once or twice per year
Dust Devil Tracks
Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns
Field Measurements of Terrestrial and Martian Dust Devils
Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types
Highly Volcanic Exoplanets, Lava Worlds, and Magma Ocean Worlds:An Emerging Class of Dynamic Exoplanets of Significant Scientific Priority
Highly volcanic exoplanets, which can be variously characterized as 'lava
worlds', 'magma ocean worlds', or 'super-Ios' are high priority targets for
investigation. The term 'lava world' may refer to any planet with extensive
surface lava lakes, while the term 'magma ocean world' refers to planets with
global or hemispherical magma oceans at their surface. 'Highly volcanic
planets', including super-Ios, may simply have large, or large numbers of,
active explosive or extrusive volcanoes of any form. They are plausibly highly
diverse, with magmatic processes across a wide range of compositions,
temperatures, activity rates, volcanic eruption styles, and background
gravitational force magnitudes. Worlds in all these classes are likely to be
the most characterizable rocky exoplanets in the near future due to
observational advantages that stem from their preferential occurrence in short
orbital periods and their bright day-side flux in the infrared. Transit
techniques should enable a level of characterization of these worlds analogous
to hot Jupiters. Understanding processes on highly volcanic worlds is critical
to interpret imminent observations. The physical states of these worlds are
likely to inform not just geodynamic processes, but also planet formation, and
phenomena crucial to habitability. Volcanic and magmatic activity uniquely
allows chemical investigation of otherwise spectroscopically inaccessible
interior compositions. These worlds will be vital to assess the degree to which
planetary interior element abundances compare to their stellar hosts, and may
also offer pathways to study both the very young Earth, and the very early form
of many silicate planets where magma oceans and surface lava lakes are expected
to be more prevalent. We suggest that highly volcanic worlds may become second
only to habitable worlds in terms of both scientific and public long-term
interest.Comment: A white paper submitted in response to the National Academy of
Sciences 2018 Exoplanet Science Strategy solicitation, from the NASA Sellers
Exoplanet Environments Collaboration (SEEC) of the Goddard Space Flight
Center. 6 pages, 0 figure
Post-depositional fracturing and subsidence of pumice flow deposits: Lascar Volcano, Chile
Unconsolidated pyroclastic flow deposits of the
1993 eruption of Lascar Volcano, Chile, have, with time,
become increasingly dissected by a network of deeply
penetrating fractures. The fracture network comprises
orthogonal sets of decimeter-wide linear voids that form a
pseudo-polygonal grid visible on the deposit surface. In this
work, we combine shallow surface geophysical imaging
tools with remote sensing observations and direct field
measurements of the deposit to investigate these fractures
and their underlying causal mechanisms. Based on ground
penetrating radar images, the fractures are observed to have
propagated to depths of up to 10 m. In addition, orbiting radar interferometry shows that deposit subsidence of up to
1 cm/year occurred between 1993 and 1996 with continued
subsidence occurring at a slower rate thereafter. In situ
measurements show that 1 m below the surface, the 1993
deposits remain 5°C to 15°C hotter, 18 years after
emplacement, than adjacent deposits. Based on the observed
subsidence as well as estimated cooling rates, the fractures are
inferred to be the combined result of deaeration, thermal
contraction, and sedimentary compaction in the months to
years following deposition. Significant environmental factors,
including regional earthquakes in 1995 and 2007, accelerated
settling at punctuated moments in time. The spatially variable
fracture pattern relates to surface slope and lithofacies
variations as well as substrate lithology. Similar fractures
have been reported in other ignimbrites but are generally
exposed only in cross section and are often attributed to
formation by external forces. Here we suggest that such
interpretations should be invoked with caution, and deformation
including post-emplacement subsidence and fracturing of
loosely packed ash-rich deposits in the months to years postemplacement
is a process inherent in the settling of pyroclastic
material
Global link between deformation and volcanic eruption quantified by satellite imagery
A key challenge for volcanological science and hazard management is that few of the world’s volcanoes are effectively monitored. Satellite imagery covers volcanoes globally throughout their eruptive cycles, independent of ground-based monitoring, providing a multidecadal archive suitable for probabilistic analysis linking deformation with eruption. Here we show that, of the 198 volcanoes systematically observed for the past 18 years, 54 deformed, of which 25 also erupted. For assessing eruption potential, this high proportion of deforming volcanoes that also erupted (46%), together with the proportion of non-deforming volcanoes that did not erupt (94%), jointly represent indicators with ‘strong’ evidential worth. Using a larger catalogue of 540 volcanoes observed for 3 years, we demonstrate how this eruption–deformation relationship is influenced by tectonic, petrological and volcanic factors. Satellite technology is rapidly evolving and routine monitoring of the deformation status of all volcanoes from space is anticipated, meaning probabilistic approaches will increasingly inform hazard decisions and strategic development