2,744 research outputs found

    Quantum Interference Phenomena Between Impurity States in d-wave Superconductors

    Full text link
    We investigate the mutual influence of impurities in two-dimensional d-wave superconductors involving self-consistent solutions of the Bogoliubov-de Gennes equations. The local order parameter suppression, the local density of states (LDOS) as well as the interference of impurity-induced structures are analyzed. We employ an impurity position averaging scheme for the DOS that does not neglect these interference effects, as the commonly used TT-matrix approaches do.Comment: 4 eps figures, presented at SNS200

    Pollutant emissions in common-rail diesel engines in extraurban cycle: rapeseed oils vs diesel fuel

    Get PDF
    The new energy strategy of EU (i.e., Directive 2009/28/EC) requires increasing the use of biofuels in transports up to at least 10% of the total fuel consumption. In the last years, the share of Diesel engines in automotive applications reached about 55% in EU market, thus trying to widen the alternatives to Diesel fuel is very important. In this framework straight vegetable oils (SVO) can represent one of the available possibilities at least in some specific applications (i.e., public transportation, hybrid or marine propulsion, etc.). SVO properties may be very different form Diesel fuel, thus operating a Diesel engine with SVO might result in some problems, especially in automotive configuration where the electronic unit acts as if it is working with Diesel fuel. This reflects in possible engine power and torque reduction, maintenance problems, and pollutant emissions during vehicles running. The latter aspect is the focus of the present paper. In this work, we used a turbocharged, four stroke, four cylinders, water cooled, commonrail multijet Diesel engine in automotive configuration to simulate the extraurban cycle according to the EU standard, comparing pollutant emissions in case of SVO and gasoil fuelling

    Reply to Comment on:"Nonmonotonic d_{x^2-y^2} Superconducting Order Parameter in Nd_{2-x}Ce_xCuO_4"

    Full text link
    We confirm that all the results of scanning SQUID, tunneling, ARPES, penetration depth and Raman experiments are consistent with a nonmonotonic d_{x^2-y^2} superconducting order parameter proposed in Phys. Rev. Lett., 88, 107002 (2002).Comment: Reply to Comment by F. Venturini, R. Hackl, and U. Michelucci cond-mat/020541

    Rain erosion numerical modeling applied to multi-MW off-shore wind turbine

    Get PDF
    In this work, the authors present a numerical prediction of erosion on two different blade geometry of a 6 MW HAWT designed for different aerodynamic loading, with the aim of studying their sensitiveness to erosion. First, the fully 3D simulations are performed using an Euler-Lagrangian approach. Flow field simulations are carried out with the open-source code OpenFOAM, based on a finite volume approach, using Multiple Reference Frame methodology. Reynolds Averaged Navier- Stokes equations for incompressible flow were solved with a k-ε turbulence model. An in-house code (P-Track) is used to compute the rain drops transport and dispersion, adopting the Particle Cloud Tracking approach (PCT). The PCT was used by some of the authors in previous works (Corsini et al., 2012; Corsini et al., 2014) to predict erosion on both axial and centrifugal fans, obtaining satisfactory results. The PCT allows to simulate a huge number of transported phase tracking just few cloud trajectories, thus resulting in reduction of computational time comparing with single particle tracking approach. Erosion is modelled accounting for the main quantities affecting the phenomenon, which is impact velocity and angle, and material properties of the target surface. Results provide the regions of the two blades more sensitive to erosion, and the effect of the blade geometry on erosion attitude

    Effects of three different stimulations (acupuncture, moxibustion, acupuncture plus moxibustion) of BL.67 acupoint at small toe on fetal behavior of breech presentation

    Get PDF
    The aim of the study was to evaluate cardiovascular effects and fetal behavior during moxibustion, acupuncture or acupuncture plus moxibustion applied on the BL.67 acupoint of women (beside the outer corner of the 5th toenail) in fetal breech presentation. During the acupoint stimulation (20 min, two times a week), the women were submitted to computerized non-stress test. Fourteen cases were treated by both acupuncture and moxibustion, 15 cases by moxibustion and 10 cases by acupuncture. In 56% of cases, fetal position was converted from breech position to cephalic one; the success share was 80% for moxibustion, 28% for acupuncture, 57% for acupuncture plus moxibustion; the conversion, on average, was achieved after 3 sessions. Statistical analysis indicated that acupuncture plus moxibustion was able to reduce fetal heart rate during the application of stimuli while acupuncture and moxibustion separately did not affect such parameter. Moreover, moxibustion and acupuncture with moxibustion reduced fetal movements while acupuncture only appears ineffective. The present study suggests that fetal movements were reduced by both acupuncture plus moxibustion and moxibustion and that fetal heart rate was reduced just by acupuncture plus moxibustion. The mechanisms leading the effect on fetal heart rate and fetal movements remain to be clarified. Even though further studies are needed, such preliminar report mainly investigated the impact of different stimula on the BL.67 acupoint. Unfortunately these small series of data do not allow us to draw any conclusion about the effectiveness of the different treatments

    Complex Systems Science: Dreams of Universality, Reality of Interdisciplinarity

    Get PDF
    Using a large database (~ 215 000 records) of relevant articles, we empirically study the "complex systems" field and its claims to find universal principles applying to systems in general. The study of references shared by the papers allows us to obtain a global point of view on the structure of this highly interdisciplinary field. We show that its overall coherence does not arise from a universal theory but instead from computational techniques and fruitful adaptations of the idea of self-organization to specific systems. We also find that communication between different disciplines goes through specific "trading zones", ie sub-communities that create an interface around specific tools (a DNA microchip) or concepts (a network).Comment: Journal of the American Society for Information Science and Technology (2012) 10.1002/asi.2264

    Internal combustion engine sensor network analysis using graph modeling

    Get PDF
    In recent years there has been a rapid development in technologies for smart monitoring applied to many different areas (e.g. building automation, photovoltaic systems, etc.). An intelligent monitoring system employs multiple sensors distributed within a network to extract useful information for decision-making. The management and the analysis of the raw data derived from the sensor network includes a number of specific challenges still unresolved, related to the different communication standards, the heterogeneous structure and the huge volume of data. In this paper we propose to apply a method based on complex network theory, to evaluate the performance of an Internal Combustion Engine. Data are gathered from the OBD sensor subset and from the emission analyzer. The method provides for the graph modeling of the sensor network, where the nodes are represented by the sensors and the edge are evaluated with non-linear statistical correlation functions applied to the time series pairs. The resulting functional graph is then analyzed with the topological metrics of the network, to define characteristic proprieties representing useful indicator for the maintenance and diagnosis

    Vegetable Oils as Fuels in Diesel Engine. Engine Performance and Emissions

    Get PDF
    AbstractThe EU new energy strategy represents a challenge and a boost for industries and researchers pushing them to find new solutions to supply the energy demand complying with new environmental requests. The transport sector is one of the most addicted to oil product and then pollutant. A new bio-fuels generation is being studied, but the use of the ones already available should be increased. The use of vegetable oils (VO) and waste cooking oils (WCO) could represent interesting alternative fuels for Diesel engines in some specific applications (i.e., public transportation, hybrid or marine propulsion, etc.). Moreover, VO can be produced almost everywhere in the world in relatively small plants, and WCO would represent the use of a waste material which otherwise should be disposed. However, operating a Diesel engine (DE) with a different fuel might results in some problems. Indeed VO and WCO have different characteristics compared to Diesel fuel (i.e, a smaller heating value, a larger density and viscosity), and this can affect the operation of a DE. In particular the DE is expected to have some problem at the injection system and power loss.In this work different vegetable oils (both straight and waste) are used to fuel a DE in automotive configuration and study its behavior. Tests are performed using a turbocharged, four stroke, four cylinders, water cooled, common-rail multijet DE. The influence of fuel used on engine power, specific consumption, efficiency, and exhaust opacity, are compared with those obtained fuelling with Diesel fuel
    • …
    corecore