170 research outputs found

    Progress of the Felsenkeller shallow-underground accelerator for nuclear astrophysics

    Full text link
    Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso, using a 0.4 MV accelerator. In the present contribution, the status of the project for a higher-energy underground accelerator is reviewed. Two tunnels of the Felsenkeller underground site in Dresden, Germany, are currently being refurbished for the installation of a 5 MV high-current Pelletron accelerator. Construction work is on schedule and expected to complete in August 2017. The accelerator will provide intense, 50 uA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.Comment: Submitted to the Proceedings of Nuclei in the Cosmos XIV, 19-24 June 2016, Niigata/Japa

    Diurnal Rhythms Result in Significant Changes in the Cellular Protein Complement in the Cyanobacterium Cyanothece 51142

    Get PDF
    Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ∼30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for ∼5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms

    First direct limit on the 334 keV resonance strength in the 22^{22}Ne({\alpha},{\gamma})26^{26}Mg reaction

    Get PDF
    In stars, the fusion of 22^{22}Ne and 4^4He may produce either 25^{25}Mg, with the emission of a neutron, or 26^{26}Mg and a γ\gamma ray. At high temperature, the (α,n\alpha,n) channel dominates, while at low temperature, it is energetically hampered. The rate of its competitor, the 22^{22}Ne(α\alpha,γ\gamma)26^{26}Mg reaction, and, hence, the minimum temperature for the (α,n\alpha,n) dominance, are controlled by many nuclear resonances. The strengths of these resonances have hitherto been studied only indirectly. The present work aims to directly measure the total strength of the resonance at EE_{r}=\,=\,334\,keV (corresponding to EE_{x}=\,=\,10949\,keV in 26^{26}Mg). The data reported here have been obtained using high intensity 4^4He+^+ beam from the INFN LUNA 400 kV underground accelerator, a windowless, recirculating, 99.9% isotopically enriched 22^{22}Ne gas target, and a 4π\pi bismuth germanate summing γ\gamma-ray detector. The ultra-low background rate of less than 0.5 counts/day was determined using 67 days of no-beam data and 7 days of 4^4He+^+ beam on an inert argon target. The new high-sensitivity setup allowed to determine the first direct upper limit of 4.0×\,\times\,1011^{-11} eV (at 90% confidence level) for the resonance strength. Finally, the sensitivity of this setup paves the way to study further 22^{22}Ne(α\alpha,γ\gamma)26^{26}Mg resonances at higher energy.Comment: Submitted to Eur. Phys. J.

    A Day in the Life of Microcystis aeruginosa Strain PCC 7806 as Revealed by a Transcriptomic Analysis

    Get PDF
    The cyanobacterium, Microcystis aeruginosa, is able to proliferate in a wide range of freshwater ecosystems and to produce many secondary metabolites that are a threat to human and animal health. The dynamic of this production and more globally the metabolism of this species is still poorly known. A DNA microarray based on the genome of M. aeruginosa PCC 7806 was constructed and used to study the dynamics of gene expression in this cyanobacterium during the light/dark cycle, because light is a critical factor for this species, like for other photosynthetic microorganisms. This first application of transcriptomics to a Microcystis species has revealed that more than 25% of the genes displayed significant changes in their transcript abundance during the light/dark cycle and in particular during the dark/light transition. The metabolism of M. aeruginosa is compartmentalized between the light period, during which carbon uptake, photosynthesis and the reductive pentose phosphate pathway lead to the synthesis of glycogen, and the dark period, during which glycogen degradation, the oxidative pentose phosphate pathway, the TCA branched pathway and ammonium uptake promote amino acid biosynthesis. We also show that the biosynthesis of secondary metabolites, such as microcystins, aeruginosin and cyanopeptolin, occur essentially during the light period, suggesting that these metabolites may interact with the diurnal part of the central metabolism

    Improved astrophysical rate for the 18O(p,α)15N reaction by underground measurements

    Get PDF
    The 18O(p,\u3b1)15N reaction affects the synthesis of 15N, 18O and 19F isotopes, whose abundances can be used to probe the nucleosynthesis and mixing processes occurring deep inside asymptotic giant branch (AGB) stars. We performed a low-background direct measurement of the 18O(p,\u3b1)15N reaction cross-section at the Laboratory for Underground Nuclear Astrophysics (LUNA) from center of mass energy Ec.m.=340keV down to Ec.m.=55keV, the lowest energy measured to date corresponding to a cross-section of less than 1 picobarn/sr. The strength of a key resonance at center of mass energy Er=90keV was found to be a factor of 10 higher than previously reported. A multi-channel R-matrix analysis of our and other data available in the literature was performed. Over a wide temperature range, T=0.01\u20131.00GK, our new astrophysical rate is both more accurate and precise than recent evaluations. Stronger constraints can now be placed on the physical processes controlling nucleosynthesis in AGB stars with interesting consequences on the abundance of 18O in these stars and in stardust grains, specifically on the production sites of oxygen-rich Group II grains

    The study of atmospheric ice-nucleating particles via microfluidically generated droplets

    Get PDF
    Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 10³–10⁶ ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK’s annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies

    Role of turbulence and electric fields in the establishment of improved confinement in tokamak plasmas

    No full text
    An extensive (INTAS) research programme started in 2002 to investigate the correlations between on the one hand the occurrence of transport barriers and improved confinement in the medium-size tokamaks TEXTOR and T-10 and on the smaller tokamaks FT-2, TUMAN-3M and CASTOR, and on the other hand electric fields, modified magnetic shear and electrostatic and magnetic turbulence using advanced diagnostics with high spatial and temporal resolution and of various active means to externally control plasma transport . This has been done in a strongly coordinated way and exploiting the complementarity of TEXTOR and T-10 and the backup potential of the three other tokamaks, which together have all the relevant experimental tools and theoretical expertise

    Direct measurements of low-energy resonance strengths of the 23Na(p,γ)24Mg reaction for astrophysics

    Get PDF
    The NeNa and the MgAl cycles play a fundamental role in the nucleosynthesis of asymptotic giant branch stars undergoing hot bottom burning. The 23Na(p, \u3b3)24Mgreaction links these two cycles and a precise determination of its rate is required to correctly estimate the contribution of these stars to the chemical evolution of various isotopes of Na, Mg and Al. At temperatures of 50 <110 MK, narrow resonances at Ep=140and 251 keVare the main contributors to the reaction rate, in addition to the direct capture that dominates in the lower part of the temperature range. We present new measurements of the strengths of these resonances at the Laboratory for Underground Nuclear Astrophysics (LUNA). We have used two complementary detection approaches: high efficiency with a 4\u3c0BGO detector for the 140keV resonance, and high resolution with a HPGe detector for the 251keV resonance. Thanks to the reduced cosmic ray background of LUNA, we were able to determine the resonance strength of the 251keV resonance as \u3c9\u3b3=482(82)\u3bceVand observed new gamma ray transitions for the decay of the corresponding state in 24Mgat Ex=11931 keV. With the highly efficient BGO detector, we observed a signal for the 140keV resonance for the first time in a direct measurement, resulting in a strength of \u3c9\u3b3140=1.46+0.58 120.53neV(68% CL). Our measurement reduces the uncertainty of the 23Na(p, \u3b3)24Mgreaction rate in the temperature range from 0.05 to 0.1GK to at most +50% 1235%at 0.07GK. Accordingly, our results imply a significant reduction of the uncertainties in the nucleosynthesis calculations
    corecore