72 research outputs found

    Paleointensity Record From the 2.7 Ga Stillwater Complex, Montana

    Get PDF
    The record of geomagnetic intensity captured in the 2.7 Ga Stillwater Complex (Montana, USA) provides a statistical description of the Archean geodynamo. We present results of modified Thellier paleointensity experiments on 441 core specimens, 114 of which pass strict reliability criteria. The specimens are from 53 sites spanning most of the Banded Series rocks in the Stillwater Complex. On the basis of thermochronologic and petrologic evidence, we interpret the highest temperature component of remanence to be a late Archean thermoremanence, though the possibility remains that it is a thermochemical remanence. Thermal models indicate that the highest temperature magnetization component at each of the sites averages ∌20–200 ka of geomagnetic secular variation. The suite of sites as distributed through the Banded Series samples a roughly a 1 Ma time interval. The average of the most reliable paleointensity measurements, uncorrected for the effects of anisotropy or cooling rate, is 38.2 ± 11.3 ÎŒT (1σ). Remanence anisotropy, cooling rate, and the nonlinear relationship between applied field and thermoremanence have a significant effect on paleointensity results; a corrected average of 30.6 ± 8.8 ÎŒT is likely a more appropriate value. Earth\u27s average dipole moment during the late Archean (5.05 ± 1.46 × 1022Am2, λpmag = 44.5°) was well within the range of estimates from Phanerozoic rocks. The distribution of site-mean paleointensities around the mean is consistent with that expected from slow cooling over timescales expected from thermal models and with secular variation comparable to that of the Phanerozoic field

    New archaeointensity data from Italy and geomagnetic ïŹeld intensity variation in the Italian Peninsula

    Get PDF
    We present new archaeointensity results from three Italian kilns situated at Ascoli Satriano, Vagnari and Fontanetto Po obtained with the Thellier modified by Coe double heating method. These data complement the directional results previously published. All sites are dated on the basis of archaeological information and/or thermoluminescence dating. The results are corrected for the anisotropy of the thermoremanent magnetization and the cooling rate effects. The new data are compared with previously published archaeointensity data from Italy and nearby countries within 900 km radius from Viterbo. An initial data set including archaeointesity data mainly coming from Italy, France, Switzerland, Czech Republic, Slovakia, Hungary, Greece and Bulgaria has been compiled. After the application of strict selection criteria, the most reliable data have been used for the calculation of a preliminary Italian intensity secular variation (SV) curve for the last 3000 yr. The new curve covers the 300 BC–400 AD and 1200–1900 AD periods. It is established by means of sliding windows of 200 yr shifted by 100 yr. The lack of reliable data for the 1000–200 BC and 400–1200 AD time intervals does not permit the calculation of a continuous curve. Clearly, more high-quality archaeointensity data from Italy and Europe are still needed to draw a robust intensity SV curve for the Italian Peninsula that could be used for archaeomagnetic dating in combination with the directional data

    Decrypting magnetic fabrics (AMS, AARM, AIRM) through the analysis of mineral shape fabrics and distribution anisotropy

    Get PDF
    The fieldwork was supported by the DIPS project (grant no. 240467) and the MIMES project (grant no. 244155) funded by the Norwegian Research Council awarded to O.G. O.P.'s position was funded from Y-TEC.Anisotropy of magnetic susceptibility (AMS) and anisotropy of magnetic remanence (AARM and AIRM) are efficient and versatile techniques to indirectly determine rock fabrics. Yet, deciphering the source of a magnetic fabric remains a crucial and challenging step, notably in the presence of ferrimagnetic phases. Here we use X-ray micro-computed tomography to directly compare mineral shape-preferred orientation and spatial distribution fabrics to AMS, AARM and AIRM fabrics from five hypabyssal trachyandesite samples. Magnetite grains in the trachyandesite are euhedral with a mean aspect ratio of 1.44 (0.24 s.d., long/short axis), and > 50% of the magnetite grains occur in clusters, and they are therefore prone to interact magnetically. Amphibole grains are prolate with magnetite in breakdown rims. We identified three components of the petrofabric that influence the AMS of the analyzed samples: the magnetite and the amphibole shape fabrics and the magnetite spatial distribution. Depending on their relative strength, orientation and shape, these three components interfere either constructively or destructively to produce the AMS fabric. If the three components are coaxial, the result is a relatively strongly anisotropic AMS fabric (P’ = 1.079). If shape fabrics and/or magnetite distribution are non-coaxial, the resulting AMS is weakly anisotropic (P’ = 1.012). This study thus reports quantitative petrofabric data that show the effect of magnetite distribution anisotropy on magnetic fabrics in igneous rocks, which has so far only been predicted by experimental and theoretical models. Our results have first-order implications for the interpretation of petrofabrics using magnetic methods.Publisher PDFPeer reviewe
    • 

    corecore