316,042 research outputs found

    Architectural implications for context adaptive smart spaces

    Get PDF
    Buildings and spaces are complex entities containing complex social structures and interactions. A smart space is a composite of the users that inhabit it, the IT infrastructure that supports it, and the sensors and appliances that service it. Rather than separating the IT from the buildings and from the appliances that inhabit them and treating them as separate systems, pervasive computing combines them and allows them to interact. We outline a reactive context architecture that supports this vision of integrated smart spaces and explore some implications for building large-scale pervasive systems

    Periodic ripples in suspended graphene

    Full text link
    We study the mechanism of wrinkling of suspended graphene, by means of atomistic simulations. We argue that the structural instability under edge compression is the essential physical reason for the formation of periodic ripples in graphene. The ripple wavelength and out-of-plane amplitude are found to obey 1/4-power scaling laws with respect to edge compression. Our results also show that parallel displacement of the clamped boundaries can induce periodic ripples, with oscillation amplitude roughly proportional to the 1/4 power of edge displacement. The results are fundamental to graphene's applications in electronics.Comment: 5 Figure

    Optical spectroscopy study of Nd(O,F)BiS2 single crystals

    Full text link
    We present an optical spectroscopy study on F-substituted NdOBiS2_2 superconducting single crystals grown using KCl/LiCl flux method. The measurement reveals a simple metallic response with a relatively low screened plasma edge near 5000 \cm. The plasma frequency is estimated to be 2.1 eV, which is much smaller than the value expected from the first-principles calculations for an electron doping level of x=0.5, but very close to the value based on a doping level of 7%\% of itinerant electrons per Bi site as determined by ARPES experiment. The energy scales of the interband transitions are also well reproduced by the first-principles calculations. The results suggest an absence of correlation effect in the compound, which essentially rules out the exotic pairing mechanism for superconductivity or scenario based on the strong electronic correlation effect. The study also reveals that the system is far from a CDW instability as being widely discussed for a doping level of x=0.5.Comment: 5 pages, 5 figure

    Room-Temperature Ferrimagnet with Frustrated Antiferroelectricity: Promising Candidate Toward Multiple State Memory

    Full text link
    On the basis of first-principles calculations we show that the M-type hexaferrite BaFe12O19 exhibits frustrated antiferroelectricity associated with its trigonal bipyramidal Fe3+ sites. The ferroelectric (FE) state of BaFe12O19, reachable by applying an external electric field to the antiferroelectric (AFE) state, can be made stable at room temperature by appropriate element substitution or strain engineering. Thus M-type hexaferrite, as a new type of multiferoic with coexistence of antiferroelectricity and ferrimagnetism, provide a basis for studying the phenomenon of frustrated antiferroelectricity and realizing multiple state memory devices.Comment: supporting material available via email. arXiv admin note: text overlap with arXiv:1210.7116 by other author

    A numerical procedure for recovering true scattering coefficients from measurements with wide-beam antennas

    Get PDF
    A numerical procedure for estimating the true scattering coefficient, sigma(sup 0), from measurements made using wide-beam antennas. The use of wide-beam antennas results in an inaccurate estimate of sigma(sup 0) if the narrow-beam approximation is used in the retrieval process for sigma(sup 0). To reduce this error, a correction procedure was proposed that estimates the error resulting from the narrow-beam approximation and uses the error to obtain a more accurate estimate of sigma(sup 0). An exponential model was assumed to take into account the variation of sigma(sup 0) with incidence angles, and the model parameters are estimated from measured data. Based on the model and knowledge of the antenna pattern, the procedure calculates the error due to the narrow-beam approximation. The procedure is shown to provide a significant improvement in estimation of sigma(sup 0) obtained with wide-beam antennas. The proposed procedure is also shown insensitive to the assumed sigma(sup 0) model
    corecore