305 research outputs found

    Long-term pulmonary functional status following coronary artery bypass grafting surgery

    Get PDF
    BACKGROUND: The present study aimed to describe the long-term alterations of pulmonary function and also to describe its association with post-operative pain after coronary artery bypass grafting (CABG) surgery. METHODS: In this prospective study, thirty non-smoker male patients undergoing isolated on-pump CABG were consecutively included in this study. Pulmonary function measurements were performed, in a sitting position, preoperatively, a week postoperatively, and 6 months after the surgery using a Medical Graphics PF/Dx pulmonary function system. Pain was determined by using visual analog scale (VAS) pain scores with a standardized questionnaire's. RESULTS: Regarding functional class, all patients had New York Heart Association (NYHA) Class II to III. A week after operation, a severe restrictive pulmonary impairment was revealed with a mean decrease in VC to 60.9 +/- 9.2% and in forced expiratory volume in one second (FEV1) to 64.6 +/- 12.2% of pre-operative values (P < 0.001). Regarding sternotomy related pain, the mean pain VAS score was preoperatively 3.3 +/- 1.5 that reached to 6.2 +/- 2.5 and 4.8 +/- 2.2 1 week and 6 months after the operation (P < 0.001). The trend of the changes in pain score within 6 months of operation was significantly similar to the trend of the changes in some pulmonary function indices such as FEV% and residual volume (RV). CONCLUSION: A significant reduction is expected in most pulmonary functional parameters following CABG despite normal pulmonary function state preoperatively. Severe pain originated from sternotomy may be an important factor related to pulmonary dysfunction following CABG

    Solubility isotope effects in aqueous solutions of methane

    Get PDF
    The isotope effect on the Henry's law coefficients of methane in aqueous solution (H/D and C-12/C-13 substitution) are interpreted using the statistical mechanical theory of condensed phase isotope effects. The missing spectroscopic data needed for the implementation of the theory were obtained either experimentally (infrared measurements), by computer simulation (molecular dynamics technique), or estimated using the Wilson's GF matrix method. The order of magnitude and sign of both solute isotope effects can be predicted by the theory. Even a crude estimation based on data from previous vapor pressure isotope effect studies of pure methane at low temperature can explain the inverse effect found for the solubility of deuterated methane in water. (C) 2002 American Institute of Physics

    Evidence for high bi-allelic expression of activating Ly49 receptors

    Get PDF
    Stochastic expression is a hallmark of the Ly49 family that encode the main MHC class-I-recognizing receptors of mouse natural killer (NK) cells. This highly polygenic and polymorphic family includes both activating and inhibitory receptor genes and is one of genome's fastest evolving loci. The inhibitory Ly49 genes are expressed in a stochastic mono-allelic manner, possibly under the control of an upstream bi-directional early promoter and show mono-allelic DNA methylation patterns. To date, no studies have directly addressed the transcriptional regulation of the activating Ly49 receptors. Our study shows differences in DNA methylation pattern between activating and inhibitory genes in C57BL/6 and F1 hybrid mouse strains. We also show a bias towards bi-allelic expression of the activating receptors based on allele-specific single-cell RTā€“PCR in F1 hybrid NK cells for Ly49d and Ly49H expression in Ly49h+/āˆ’ mice. Furthermore, we have identified a region of high sequence identity with possible transcriptional regulatory capacity for the activating Ly49 genes. Our results also point to a likely difference between NK and T-cells in their ability to transcribe the activating Ly49 genes. These studies highlight the complex regulation of this rapidly evolving gene family of central importance in mouse NK cell function

    Glioblastoma and glioblastoma stem cells are dependent on functional MTH1

    Get PDF
    Glioblastoma multiforme (GBM) is an aggressive form of brain cancer with poor prognosis. Cancer cells are characterized by a specific redox environment that adjusts metabolism to its specific needs and allows the tumor to grow and metastasize. As a consequence, cancer cells and especially GBM cells suffer from elevated oxidative pressure which requires antioxidant-defense and other sanitation enzymes to be upregulated. MTH1, which degrades oxidized nucleotides, is one of these defense enzymes and represents a promising cancer target. We found MTH1 expression levels elevated and correlated with GBM aggressiveness and discovered that siRNA knock-down or inhibition of MTH1 with small molecules efficiently reduced viability of patient-derived GBM cultures. The effect of MTH1 loss on GBM viability was likely mediated through incorporation of oxidized nucleotides and subsequent DNA damage. We revealed that MTH1 inhibition targets GBM independent of aggressiveness as well as potently kills putative GBM stem cells in vitro. We used an orthotopic zebrafish model to confirm our results in vivo and light-sheet microscopy to follow the effect of MTH1 inhibition in GBM in real time. In conclusion, MTH1 represents a promising target for GBM therapy and MTH1 inhibitors may also be effective in patients that suffer from recurring disease

    Hypoxic regulation of RIOK3 is a major mechanism for cancer cell invasion and metastasis.

    Get PDF
    Hypoxia is a common feature of locally advanced breast cancers that is associated with increased metastasis and poorer survival. Stabilisation of hypoxia-inducible factor-1Ī± (HIF1Ī±) in tumours causes transcriptional changes in numerous genes that function at distinct stages of the metastatic cascade. We demonstrate that expression of RIOK3 (RIght Open reading frame kinase 3) was increased during hypoxic exposure in an HIF1Ī±-dependent manner. RIOK3 was localised to distinct cytoplasmic aggregates in normoxic cells and underwent redistribution to the leading edge of the cell in hypoxia with a corresponding change in the organisation of the actin cytoskeleton. Depletion of RIOK3 expression caused MDA-MB-231 to become elongated and this morphological change was due to a loss of protraction at the trailing edge of the cell. This phenotypic change resulted in reduced cell migration in two-dimensional cultures and inhibition of cell invasion through three-dimensional extracellular matrix. Proteomic analysis identified interactions of RIOK3 with actin and several actin-binding factors including tropomyosins (TPM3 and TPM4) and tropomodulin 3. Depletion of RIOK3 in cells resulted in fewer and less organised actin filaments. Analysis of these filaments showed reduced association of TPM3, particularly during hypoxia, suggesting that RIOK3 regulates actin filament specialisation. RIOK3 depletion reduced the dissemination of MDA-MB-231 cells in both a zebrafish model of systemic metastasis and a mouse model of pulmonary metastasis. These findings demonstrate that RIOK3 is necessary for maintaining actin cytoskeletal organisation required for migration and invasion, biological processes that are necessary for hypoxia-driven metastasis

    Comprehensive Analysis of Transcript Start Sites in Ly49 Genes Reveals an Unexpected Relationship with Gene Function and a Lack Of Upstream Promoters

    Get PDF
    Comprehensive analysis of the transcription start sites of the Ly49 genes of C57BL/6 mice using the oligo-capping 5ā€²-RACE technique revealed that the genes encoding the ā€œmissing selfā€ inhibitory receptors, Ly49A, C, G, and I, were transcribed from multiple broad regions in exon 1, in the intron1/exon2 region, and upstream of exon -1b. Ly49E was also transcribed in this manner, and uniquely showed a transcriptional shift from exon1 to exon 2 when NK cells were activated in vitro with IL2. Remarkably, a large proportion of Ly49E transcripts was then initiated from downstream of the translational start codon. By contrast, the genes encoding Ly49B and Q in myeloid cells, the activating Ly49D and H receptors in NK cells, and Ly49F in activated T cells, were predominantly transcribed from a conserved site in a pyrimidine-rich region upstream of exon 1. An āˆ¼200 bp fragment from upstream of the Ly49B start site displayed tissue-specific promoter activity in dendritic cell lines, but the corresponding upstream fragments from all other Ly49 genes lacked detectable tissue-specific promoter activity. In particular, none displayed any significant activity in a newly developed adult NK cell line that expressed multiple Ly49 receptors. Similarly, no promoter activity could be found in fragments upstream of intron1/exon2. Collectively, these findings reveal a previously unrecognized relationship between the pattern of transcription and the expression/function of Ly49 receptors, and indicate that transcription of the Ly49 genes expressed in lymphoid cells is achieved in a manner that does not require classical upstream promoters
    • ā€¦
    corecore