69 research outputs found

    First-principles modelling of molecular single-electron transistors

    Full text link
    We present a first-principles method for calculating the charging energy of a molecular single-electron transistor operating in the Coulomb blockade regime. The properties of the molecule are modeled using density-functional theory, the environment is described by a continuum model, and the interaction between the molecule and the environment are included through the Poisson equation. The model is used to calculate the charge stability diagrams of a benzene and C60_{60} molecular single-electron transistor

    Linking the dust and chemical evolution: Taurus and Perseus -- New collisional rates for HCN, HNC, and their C, N, and H isotopologues

    Full text link
    HCN, HNC, and their isotopologues are ubiquitous molecules that can serve as chemical thermometers and evolutionary tracers to characterize star-forming regions. Despite their importance in carrying information that is vital to studies of the chemistry and evolution of star-forming regions, the collision rates of some of these molecules have not been available for rigorous studies in the past. We perform an up-to-date gas and dust chemical characterization of two different star-forming regions, TMC 1-C and NGC 1333-C7, using new collisional rates of HCN, HNC, and their isotopologues. We investigated the possible effects of the environment and stellar feedback in their chemistry and their evolution. With millimeter observations, we derived their column densities, the C and N isotopic fractions, the isomeric ratios, and the deuterium fractionation. The continuum data at 3 mm and 850 μ\mum allowed us to compute the emissivity spectral index and look for grain growth as an evolutionary tracer. The H13^{13}CN/HN13^{13}C ratio is anticorrelated with the deuterium fraction of HCN, thus it can readily serve as a proxy for the temperature. The spectral index (β1.342.09)(\beta\sim 1.34-2.09) shows a tentative anticorrelation with the H13^{13}CN/HN13^{13}C ratio, suggesting grain growth in the evolved, hotter, and less deuterated sources. Unlike TMC 1-C, the south-to-north gradient in dust temperature and spectral index observed in NGC 1333-C7 suggests feedback from the main NGC 1333 cloud. With this up-to-date characterization of two star-forming regions, we found that the chemistry and the physical properties are tightly related. The dust temperature, deuterium fraction, and the spectral index are complementary evolutionary tracers. The large-scale environmental factors may dominate the chemistry and evolution in clustered star-forming regions.Comment: 25 pages, 20 figure

    Constraining the pˉ/p\bar{p}/p Ratio in TeV Cosmic Rays with Observations of the Moon Shadow by HAWC

    Get PDF
    An indirect measurement of the antiproton flux in cosmic rays is possible as the particles undergo deflection by the geomagnetic field. This effect can be measured by studying the deficit in the flux, or shadow, created by the Moon as it absorbs cosmic rays that are headed towards the Earth. The shadow is displaced from the actual position of the Moon due to geomagnetic deflection, which is a function of the energy and charge of the cosmic rays. The displacement provides a natural tool for momentum/charge discrimination that can be used to study the composition of cosmic rays. Using 33 months of data comprising more than 80 billion cosmic rays measured by the High Altitude Water Cherenkov (HAWC) observatory, we have analyzed the Moon shadow to search for TeV antiprotons in cosmic rays. We present our first upper limits on the pˉ/p\bar{p}/p fraction, which in the absence of any direct measurements, provide the tightest available constraints of 1%\sim1\% on the antiproton fraction for energies between 1 and 10 TeV.Comment: 10 pages, 5 figures. Accepted by Physical Review

    Gas phase Elemental abundances in Molecular cloudS (GEMS) : IV. Observational results and statistical trends

    Get PDF
    Gas phase Elemental abundances in Molecular CloudS (GEMS) is an IRAM 30 m Large Program designed to provide estimates of the S, C, N, and O depletions and gas ionization degree, X(e(-)), in a selected set of star-forming filaments of Taurus, Perseus, and Orion. Our immediate goal is to build up a complete and large database of molecular abundances that can serve as an observational basis for estimating X(e(-)) and the C, O, N, and S depletions through chemical modeling. We observed and derived the abundances of 14 species ((CO)-C-13, (CO)-O-18, HCO+, (HCO+)-C-13, (HCO+)-O-18, HCN, (HCN)-C-13, HNC, HCS+, CS, SO, (SO)-S-34, H2S, and OCS) in 244 positions, covering the A(V) similar to 3 to similar to 100 mag, n(H-2) similar to a few 10(3) to 10(6) cm(-3), and T-k similar to 10 to similar to 30 K ranges in these clouds, and avoiding protostars, HII regions, and bipolar outflows. A statistical analysis is carried out in order to identify general trends between different species and with physical parameters. Relations between molecules reveal strong linear correlations which define three different families of species: (1) (CO)-C-13 and (CO)-O-18 isotopologs; (2) (HCO+)-C-13, (HCO+)-O-18, H-13 CN, and HNC; and (3) the S-bearing molecules. The abundances of the CO isotopologs increase with the gas kinetic temperature until T-K similar to 15 K. For higher temperatures, the abundance remains constant with a scatter of a factor of similar to 3. The abundances of H-13 CO+, HC18 O+, H-13 CN, and HNC are well correlated with each other, and all of them decrease with molecular hydrogen density, following the law proportional to n(H-2)(-0.8 +/- 0.2). The abundances of S-bearing species also decrease with molecular hydrogen density at a rate of (S-bearing/H)(gas) proportional to n(H-2)(-0.6 +/- 0.1). The abundances of molecules belonging to groups 2 and 3 do not present any clear trend with gas temperature. At scales of molecular clouds, the (CO)-O-18 abundance is the quantity that better correlates with the cloud mass. We discuss the utility of the (CO)-C-13/(CO)-O-18, HCO+/(HCO+)-C-13, and H-13 CO+/(HCN)-C-13 abundance ratios as chemical diagnostics of star formation in external galaxies.Peer reviewe

    O pensamento de Vygotsky nas reuniões da ANPEd (1998-2003)

    Full text link
    corecore