Abstract

We present a first-principles method for calculating the charging energy of a molecular single-electron transistor operating in the Coulomb blockade regime. The properties of the molecule are modeled using density-functional theory, the environment is described by a continuum model, and the interaction between the molecule and the environment are included through the Poisson equation. The model is used to calculate the charge stability diagrams of a benzene and C60_{60} molecular single-electron transistor

    Similar works

    Full text

    thumbnail-image

    Available Versions