101 research outputs found

    Development of a Modular Unit of a Higher Level Framework or Tool for Basic Programming Course Teaching Through E-Learning Mode

    Get PDF
    This paper reports about the development of a modular unit of a higher level framework or tool whose intended objective is the creation of animated lessons for basic programming (CS1) course in computer science discipline with visual aids. The goal of such lessons is to address the difficulties faced by the novice programmers in CS1 course.This module here after referred to as ‘type writer’allows instructors to render programmes or code snippets in a live typing manner as opposed to their sudden or en-block placement on the presentation area like a Power Point Slide; a commonly used approach in the present day eLearning.This project is planned to be executed in two stages and ‘type writer’ is the outcome of the first stage. This would be combined with another two modules that are planned to be developed in the second stage, to make the complete tool. The entire tool would be developed in Action Script 3.0 language that works on Adobe Flash Platform

    Performance Comparison between Nonidentical Segmented Exponential Concave and Nonidentical Segmented Exponential Convex Serrated CATRs

    Get PDF
    This paper presented a theoretical and numerical assessment for nonidentical segmented exponential- (NISE-) convex and NISE-concave serrated plane CATRs by changing number of serrations. The investigation was based on diffraction theory and, more specifically, on the diffraction formulation of Fresnel. The compact antenna test range (CATR) provides uniform illumination within the Fresnel region to the test antenna. Application of serrated edges has been shown to be a good method to control diffraction at the edges of the reflectors. In this paper, the Fresnel fields of NISE-convex and NISE-concave serrated CATRs are analyzed using physical optics (PO) technique. The PO analysis is applied in this paper for plane reflector serrated CATR only. The same analysis is applied to any type of reflector. In this paper, lens-based reflector is not considered. It is observed that NISE-concave serrated CATR gives less ripple and enhanced quiet zone width than NISE-convex

    SCHEDULING OF UPDATES IN DATA WAREHOUSES

    Get PDF
    ABSTRACT A stream warehouse enables queries that seamlessly range from realtime alerting and diagnostics to long-term data mining. Continuously loading data from many different and uncontrolled sources into a real-time stream warehouse introduces a new consistency problem: users want results in as timely a fashion as possible, but "stable" results often require lengthy synchronization delays. In this paper we develop a theory of temporal consistency for stream warehouses that allows for multiple consistency levels. We model the streaming warehouse update problem as a scheduling problem, where jobs correspond to processes that load new data into tables, and whose objective is to minimize data staleness over time

    Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004?2005

    No full text
    International audienceWith the recent increase in the satellite-based navigation applications, the ionospheric total electron content (TEC) and the L-band scintillation measurements have gained significant importance. In this paper we present the temporal and spatial variations in TEC derived from the simultaneous and continuous measurements made, for the first time, using the Indian GPS network of 18 receivers located from the equator to the northern crest of the equatorial ionization anomaly (EIA) region and beyond, covering a geomagnetic latitude range of 1° S to 24° N, using a 16-month period of data for the low sunspot activity (LSSA) years of March 2004 to June 2005. The diurnal variation in TEC at the EIA region shows its steep increase and reaches its maximum value between 13:00 and 16:00 LT, while at the equator the peak is broad and occurs around 16:00 LT. A short-lived day minimum occurs between 05:00 to 06:00 LT at all the stations from the equator to the EIA crest region. Beyond the crest region the day maximum values decrease with the increase in latitude, while the day minimum in TEC is flat during most of the nighttime hours, i.e. from 22:00 to 06:00 LT, a feature similar to that observed in the mid-latitudes. Further, the diurnal variation in TEC show a minimum to maximum variation of about 5 to 50 TEC units, respectively, at the equator and about 5 to 90 TEC units at the EIA crest region, which correspond to range delay variations of about 1 to 8 m at the equator to about 1 to 15 m at the crest region, at the GPS L1 frequency of 1.575 GHz. The day-to-day variability is also significant at all the stations, particularly during the daytime hours, with maximum variations at the EIA crest regions. Further, similar variations are also noticed in the corresponding equatorial electrojet (EEJ) strength, which is known to be one of the major contributors for the observed day-to-day variability in TEC. The seasonal variation in TEC maximizes during the equinox months followed by winter and is minimum during the summer months, a feature similar to that observed in the integrated equatorial electrojet (IEEJ) strength for the corresponding seasons. In the Indian sector, the EIA crest is found to occur in the latitude zone of 15° to 25° N geographic latitudes (5° to 15° N geomagnetic latitudes). The EIA also maximizes during equinoxes followed by winter and is not significant in the summer months in the LSSA period, 2004?2005. These studies also reveal that both the location of the EIA crest and its peak value in TEC are linearly related to the IEEJ strength and increase with the increase in IEEJ

    Experimental Evaluation of Strength Degradation Temperature for Carbon Epoxy Filament Wound Composite

    Get PDF
    Polymeric composites have been widely used in various structural and thermal aerospace applications. Polymeric composites having high strength and high modulus reinforcement are ideally suited for lot of critical aerospace applications as structure is designed with high specific strength and high specific modulus. In case of launch vehicles/ missile one such application is design and manufacturing of solid rocket motor casing with polymeric composites as it give high performance and reduces inert weight of propulsion system. The high specific strength and high specific modulus of composite materials makes it ideal choice for designing the composite rocket motor case (CRMC). These are manufactured with filament winding process. As per ASTM D 2290 test method, the apparent tensile strength can be evaluated by preparing ring specimens from filament wound shell which simulates the hoop winding and cylindrical geometry of composite motor case. During flight in trajectory, the temperature on external surface of rocket motor will rise due to kinetic heating as result of aerodynamic drag. The mechanical properties of FRP composites degrades beyond certain temperature, depending primarily upon resin system and its glass transition temperature (Tg). In present work, the method of ring fabrication using filament winding is used to prepare test samples to experimentally test and evaluate apparent tensile strength with temperature of Carbon Epoxy composite. The tensile test at ambient is also done on specimens made from carbon Epoxy laminate using filament winding technique and are compared with ring test results.. The Glass Transition temperature (Tg) for Carbon Epoxy is also determined with Dry Scanning Calorimetry (DSC) techniqu

    On the validity of the ionospheric pierce point (IPP) altitude of 350 km in the Indian equatorial and low-latitude sector

    Get PDF
    The GPS data provides an effective way to estimate the total electron content (TEC) from the differential time delay of L1 and L2 transmissions from the GPS. The spacing of the constellation of GPS satellites in orbits are such that a minimum of four GPS satellites are observed at any given point in time from any location on the ground. Since these satellites are in different parts of the sky and the electron content in the ionosphere varies both spatially and temporally, the ionospheric pierce point (IPP) altitude or the assumed altitude of the centroid of mass of the ionosphere plays an important role in converting the vertical TEC from the measured slant TEC and vice versa. In this paper efforts are made to examine the validity of the IPP altitude of 350 km in the Indian zone comprising of the ever-changing and dynamic ionosphere from the equator to the ionization anomaly crest region and beyond, using the simultaneous ionosonde data from four different locations in India. From this data it is found that the peak electron density height (<i>h<sub>p</sub>F<sub>2</sub></i>) varies from about 275 to 575 km at the equatorial region, and varies marginally from 300 to 350 km at and beyond the anomaly crest regions. Determination of the effective altitude of the IPP employing the inverse method suggested by Birch et al. (2002) did not yield any consistent altitude in particular for low elevation angles, but varied from a few hundred to one thousand kilometers and beyond in the Indian region. However, the vertical TEC computed from the measured GPS slant TEC for different IPP altitudes ranging from 250 to 750 km in the Indian region has revealed that the TEC does not change significantly with the IPP altitude, as long as the elevation angle of the satellite is greater than 50 degrees. However, in the case of satellites with lower elevation angles (<50°), there is a significant departure in the TEC computed using different IPP altitudes from both methods. Therefore, the IPP altitude of 350 km may be taken as valid even in the Indian sector but only in the cases of satellite passes with elevation angles greater than 50°

    Distribution of sea weeds off Kattapadu - Tiruchendur coast, Tamil nadu

    Get PDF
    The present paper deals with the distribution of seaweeds and seagrasses during the deep sea survey conducted in the first sector from Kattapadu to Tiruchendur in Tamil Nadu coast between December 1986 and March 1987 covering an area of 650 sq.km. In thiS survey. 58 species of marine algae \\ere recorded. of which 7 belong to Chlorophyta. 12 to Phaeophyta and 39 to Rhodophyta. Three species of seagrasses vi z. Cymodocea serrl/lata. Halophila ovails and H. ovala were also recorded at the depths ranging from 5.5 to 21.5 III Halim eda macroloba, D,ClyOIO barlayresiana, D. Maxima, Gracliaria corl/cala var. corlicala, G. edulis, Sarcodia indica, Sarconema filiform e, Soliena rob"sla, flypnea esperi and H. "alenliae were found to be dominant and widely distributed. Hydrological data were also collected from area surveyed. The atmospheric and bottom water temperature varied from 25.0 to 36.8'C and 26.0 to 31.8'C respectively. The pH ranged from 8.3 to 8.6 and the salinity from 26.39 to 33.430/00 . The dissolved oxygen ranged from 3A2 to 6.47 mill. The phosphate content varied from 0.05 to 0. 15 I'g atm/ l, silicate from 4.00 to 12.00 I'g atmll, nitrate from 0.25 to 1.00 I'g at mil and nitrite from 1.05 to 3.99 I'g atml l

    Geomagnetic activity control on VHF scintillations over an Indian low latitude station, Waltair (17.7°N, 83.3°E, 20°N dip)

    Get PDF
    Using the data of amplitude scintillations recorded at 244 MHz from the geostationary satellite, FLEETSAT (73° E) at a low latitude station, Waltair (17.7°N, 83.3°E, 20°N dip), during the increasing sunspot activity period of 1997-2000, the effect of the geomagnetic storms on the occurrence of ionospheric scintillations has been studied. A total of 60 SC storms studied during this period, following the Aarons' criterion, reveals that the local time of onset of the recovery phase of the geomagnetic storms play an important role in the generation or inhibition of the ionospheric irregularities. Out of the 60 storms studied, nearly 60 to 70% satisfied the categories I, II and III of Aarons' criteria. However, in the remaining 30 to 40% of the cases, no consistent results were observed. Thus, there is a necessity for further investigation of the effect of geomagnetic storms on ionospheric irregularities, particularly with reference to the altitude variations of the F-layer (h'F) relating to the changes in the local electric fields
    corecore