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ABSTRACT 

A stream warehouse enables queries that seamlessly range from realtime alerting and diagnostics to long-term data 
mining. Continuously loading data from many different and uncontrolled sources into a real-time stream warehouse 
introduces a new consistency problem: users want results in as timely a fashion as possible, but “stable” results often 
require lengthy synchronization delays. In this paper we develop a theory of temporal consistency for stream 
warehouses that allows for multiple consistency levels. We model the streaming warehouse update problem as a 
scheduling problem, where jobs correspond to processes that load new data into tables, and whose objective is to 
minimize data staleness over time.  
 

 
 
 
INTRODUCTION 

Tremendous and potentially infinite volumes of 
data streams are often generated by real-time 
surveillance systems, communication networks, 
Internet traffic, on-line transactions in the 
financial market or retail industry, electric power 
grids, industry production processes, scientific 
and engineering experiments, remote sensors, and 
other dynamic environments. Unlike traditional 
data sets, stream data flow in and out of a 
computer system continuously andwith varying 
update rates. They are temporally ordered, fast 
changing, massive, and potentially infinite. It 
may be impossible to store an entire data stream 
or to scan through it multiple times due to its 
tremendous volume. Moreover, stream data tend 

to be of a rather low level of abstraction, whereas 
most analysts are interested in relatively high-
level dynamic changes, such as trends and 
deviations. To discover knowledge or patterns 
from data streams, it is necessary to develop 
single-scan, on-line, multilevel, multidimensional 
stream processing and analysis methods. 
Traditional data warehouses are updated during 
down times [25] and store layers of complex 
materialized views over terabytes of historical 
data. On the other hand, Data Stream 
Management Systems (DSMS) support simple 
analyses on recently arrived data in real time. 
Streaming warehouses such as Data Depot [15] 
combine the features of these two systems by 
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maintaining a unified view of current and 
historical data.  
The goal of a streaming warehouse is to 
propagate new data across all the relevant tables 
and views as quickly as possible. Once new data 
are loaded, the applications and triggers defined 
on the warehouse can take immediate action. This 
allows businesses to make decisions in nearly real 
time, which may lead to increased profits, 
improved customer satisfaction, and prevention 
of serious problems that could develop if no 
action was taken. Recent work on the streaming 
warehouse has focused on speeding up the 
Extract –Transform-Load (ETL) process [28] 
[32]. There has also been work on supporting 
various warehouse maintenance policies, such as 
immediate, deferred (update views only when 
queried) and periodic [10]. There has been little 
work on choosing, of all the tables that are now 
out-of-date due to the arrival of new data, which 
one should update next. This is exactly the 
problem we study in this paper. [36]  Instant view 
maintenance appear to be a reasonable solution 
for a stream. Whenever new data arrive, we 
instantly update the corresponding “base” table T. 
after T has been updated; we activate the updates 
of all the materialized views sourced from T, 
followed by all the views defined over those 
views, and so on. The problem with this approach 
is the new data may arrive on multiple streams, 
but there is no mechanism for restraining the 
number of tables that can be updated 
simultaneously. Running too many parallel 
updates can degrade performance due to memory 
and CPU-cache thrashing, disk-arm thrashing, 
context switching etc.  

Data consistency.  
Similarly to previous work on data warehousing, 
we want to ensure that each view reflects a 
“consistent” state of its base data [10] [35]. In 
addition to understanding data semantics and 
query results, another use for consistency is to 
minimize the number of base table and view 

updates in a warehouse. The update consistency 
of a table is the minimal consistency required by 
queries on it or its dependent tables, and 
determines when to refresh its partition(s). A 
partition of a table is computed only when it can 
be inferred to have a query consistency matching 
the desired update consistency. [37] 
 
Hierarchies and priorities.  
A data warehouse stores multiple layers of 
materialized views, e.g., a fact table of fine-
grained performance statistics, the performance 
statistics rolled up to a coarser granularity, the 
rolled-up table joined with a summary of error 
reports, and so on. Some views are more 
important than others and are assigned higher 
priorities. For example, in the context of network 
data, responding to error alerts is critical for 
maintaining a reliable network, while loading 
performance statistics is not. We also need to 
prioritize tables that server as sources to a large 
number of materialized views. If such a table is 
updated, not only does it reduce its own staleness, 
but it also leads to updates of other tables. [36] 

Heterogeneity and non-preemptibility. 
Different streams may have widely different 
inter-arrival times and data volumes. For 
example, a streaming feed may produce data 
every minute, while a dump from an OLTP 
database may arrive once per day. This kind of 
heterogeneity makes real-time scheduling 
difficult. Suppose that we have three recurring 
update jobs, the first two being short jobs that 
arrive every ten time units and take two time 
units each to complete, and the third being a long 
job that arrives every 100 time units and takes 20 
time units to complete. The expected system 
utilization of these jobs is only 60 percent – in an 
interval of length 100. We spend 20 time units on 
the long job, plus 2*10=20 time units on ten 
instances of each of the short jobs. However, 
serially executing these jobs starves the short 
ones whenever the long one is being executed. 
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This is because the execution time of the long job 
is longer than the inter-arrival time of the short 
ones. This means that tables or views whose 
update jobs are short may have high staleness. 
However, short jobs correspond to tables that are 
updated often, which are generally important. 
One way to deal with a heterogeneous workload 
is to allow preemptions. However, data 
warehouse updates are difficult to preempt for 
several reasons. For one, they use significant non-
CPU resources such as memory, disk I/Os, file 
locks and so on. Also, updates may involve 
complex ETL processes, parts of which may be 
implemented outside the database. [36] 

Another solution is to schedule a bounded 
number of update jobs in parallel. There are two 
variants of parallel scheduling. In partitioned 
scheduling, we cluster similar jobs together and 
assign dedicated resources (e.g, CPUs and /or 
disks) to each cluster [27]. In global scheduling, 
multiple jobs can run at the same time, but they 
use the same set of resources. Clustering jobs 
according to their lengths can protect short jobs 
from being blocked by long ones, but it is 
generally less efficient than global scheduling 
since one partition may have a queue of pending 
jobs while another partition is idle [4] [12]. 
Furthermore adding parallelism to scheduling 
problems generally makes the problems more 
difficult; tractable scheduling problems become 
intractable, real-time guarantees loosen, and so 
on [11]. The real-time community has developed 
the notion of fair scheduling for real-time 
scheduling on multi-processors [5].  

Transient overload.  
Streaming warehouses are inherently subject to 
overload in the same way the DSMSs are. For 
example, in a network data warehouse, a network 
problem will generally lead to a significantly 
increased volume of data flowing into the 
warehouse. At the same time, the volume of 
queries will increase as network managers 
attempt to understand and deal with the event. A 

common way to deal with transient overload in a 
real-time system is to temporarily discard jobs. 
Discarding some data is acceptable in a DSMS 
that evaluates simple queries in a single pass and 
does not store any data persistently [31].  

SYSTEM MODEL 

Warehousing Architecture 
Figure illustrates a streaming data warehouse. 
Each data stream is generated by an external 
source, with a batch of new data, consisting of 
one or more records, being pushed to the 
warehouse with period pi. If the period of a 
stream is unknown or unpredictable, we let the 
user choose a period with which the warehouse 
should check for new data. Examples of streams 
collected by an Internet Service Provider include 
router performance statistics such as CPU usage; 
system logs; routing table updates; link layer 
alerts, etc.  An important property of the data 
streams in our motivating applications is that they 
are append-only, i.e., existing records are never 
modified or deleted. For example, a stream of 
average router CPU utilization measurement may 
consist of records with fields (timestamp, 
router_name, CPU_utilization), and a new data 
file with updated CPU measurement for each 
router may arrive at the warehouse every five 
minutes. [36] 

 

Figure: Stream data warehouse [36] 

A streaming data warehouse maintains two types 
of tables: base and derived. Each table may be 



SCHEDULING OF UPDATES IN DATA WAREHOUSES 
 

P. URMILA, et al.                                                                                                                                    365 

 

stored partially or wholly on disk. A base table is 
loaded directly from a data stream. A derived 
table is materialized view defined over one or 
more (base or derived) tables.  Each base or 
derived table Tj has a user-defined priority pj and 
a time-dependent staleness function Sj(τ ).  
Relationships among source and derived table 
form a dependency graph. For each table Tj, we 
define a set of its ancestor tables as those which 
directly or indirectly serve as its sources, and a 
set of its dependent tables as those which are 
directly or indirectly sourced from Tj. For 
example, T1, T2 and T3 are ancestors of T4, and T3 
and T4 are dependents of T1. When new data 
arrive on stream i, an update job Ji is released, 
whose purpose is to execute the ETL tasks, load 
the new data into the corresponding base table Ti, 
and update any indices. When this update job is 
completed, update jobs are released for all tables 
directly sourced from Ti in order to propagate the 
new data that have been loaded into Ti. When 
those jobs are completed, update jobs for the 
remaining dependent tables are released in the 
breadth-first order specified by the dependency 
graph. Each update job is modeled as an atomic, 
non-preemptible task. The purpose of an update 
scheduler is to decide which of the released 
update jobs to execute next; as mentioned earlier, 
the need for resource control prevents us from 
always executing update jobs as soon as they are 
released. The external sources push append-only 
data streams into the warehouse with a wide 
range of inter-arrival times. [36] 
This proposed system allows business to make 
decisions in real time. This data stream 
management system supports simple analyses on 
recently arrived data in real time. 
On-Line stock trading, where recent transactions 
generated by multiple stock exchange are 
compared against historical trend in nearly real 
time to identify profit opportunities in the 
proposed system. 
The traditional data warehouses are typically 
refreshed during downtimes, streaming 

warehouses are updated as new data arrive. 
Where traditional data warehouse store layers of 
complex materialized views over terabytes of 
historical data. This existing system does not 
support to make decisions in real time and 
immediately. This existing system not suitable for 
data warehouse maintenance. This Existing 
system will not suitable for online scheduling 
problem. Because it does not allow to take 
immediate decisions. 
It does not support various warehouse 
maintenance policies such as immediate, deferred 
and periodic. 

It enables real time decision support for 
business critical applications. 
It is used to compare multiple stock exchanges 
against historical trends in nearly real time to 
identify profit, performance, defect and loss. 
Data stream management system support simple 
analyses on recently arrived data in real time. 
 
CONCLUSION 
We solved the problem of scheduling updates in a 
real-time streaming warehouse. We projected the 
notion of averages staleness as a scheduling 
metric and presented scheduling algorithms 
designed to handle complex environment of a 
streaming data warehouse.  

We then proposed a scheduling framework that 
assigns jobs to processing tracks and also uses the 
basic algorithms to schedule jobs within a same.  
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