
 International Journal of Advanced Computer and Mathematical Sciences
 ISSN 2230-9624. Vol 3, Issue 3, 2012, pp 362-367

http://bipublication.com

SCHEDULING OF UPDATES IN DATA WAREHOUSES

P. URMILA, K.SIVA RAMA KRISHNA, P. RAJA PRAKASH RAO

DEPT OF CSE, TRR ENGINEERING COLLEGE, HYDERABAD, A.P, INDIA

[Received-09/09/2012, Accepted-27/09/2012]

ABSTRACT

A stream warehouse enables queries that seamlessly range from realtime alerting and diagnostics to long-term data
mining. Continuously loading data from many different and uncontrolled sources into a real-time stream warehouse
introduces a new consistency problem: users want results in as timely a fashion as possible, but “stable” results often
require lengthy synchronization delays. In this paper we develop a theory of temporal consistency for stream
warehouses that allows for multiple consistency levels. We model the streaming warehouse update problem as a
scheduling problem, where jobs correspond to processes that load new data into tables, and whose objective is to
minimize data staleness over time.

INTRODUCTION

Tremendous and potentially infinite volumes of
data streams are often generated by real-time
surveillance systems, communication networks,
Internet traffic, on-line transactions in the
financial market or retail industry, electric power
grids, industry production processes, scientific
and engineering experiments, remote sensors, and
other dynamic environments. Unlike traditional
data sets, stream data flow in and out of a
computer system continuously andwith varying
update rates. They are temporally ordered, fast
changing, massive, and potentially infinite. It
may be impossible to store an entire data stream
or to scan through it multiple times due to its
tremendous volume. Moreover, stream data tend

to be of a rather low level of abstraction, whereas
most analysts are interested in relatively high-
level dynamic changes, such as trends and
deviations. To discover knowledge or patterns
from data streams, it is necessary to develop
single-scan, on-line, multilevel, multidimensional
stream processing and analysis methods.
Traditional data warehouses are updated during
down times [25] and store layers of complex
materialized views over terabytes of historical
data. On the other hand, Data Stream
Management Systems (DSMS) support simple
analyses on recently arrived data in real time.
Streaming warehouses such as Data Depot [15]
combine the features of these two systems by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357328218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SCHEDULING OF UPDATES IN DATA WAREHOUSES

P. URMILA, et al. 363

maintaining a unified view of current and
historical data.
The goal of a streaming warehouse is to
propagate new data across all the relevant tables
and views as quickly as possible. Once new data
are loaded, the applications and triggers defined
on the warehouse can take immediate action. This
allows businesses to make decisions in nearly real
time, which may lead to increased profits,
improved customer satisfaction, and prevention
of serious problems that could develop if no
action was taken. Recent work on the streaming
warehouse has focused on speeding up the
Extract –Transform-Load (ETL) process [28]
[32]. There has also been work on supporting
various warehouse maintenance policies, such as
immediate, deferred (update views only when
queried) and periodic [10]. There has been little
work on choosing, of all the tables that are now
out-of-date due to the arrival of new data, which
one should update next. This is exactly the
problem we study in this paper. [36] Instant view
maintenance appear to be a reasonable solution
for a stream. Whenever new data arrive, we
instantly update the corresponding “base” table T.
after T has been updated; we activate the updates
of all the materialized views sourced from T,
followed by all the views defined over those
views, and so on. The problem with this approach
is the new data may arrive on multiple streams,
but there is no mechanism for restraining the
number of tables that can be updated
simultaneously. Running too many parallel
updates can degrade performance due to memory
and CPU-cache thrashing, disk-arm thrashing,
context switching etc.

Data consistency.
Similarly to previous work on data warehousing,
we want to ensure that each view reflects a
“consistent” state of its base data [10] [35]. In
addition to understanding data semantics and
query results, another use for consistency is to
minimize the number of base table and view

updates in a warehouse. The update consistency
of a table is the minimal consistency required by
queries on it or its dependent tables, and
determines when to refresh its partition(s). A
partition of a table is computed only when it can
be inferred to have a query consistency matching
the desired update consistency. [37]

Hierarchies and priorities.
A data warehouse stores multiple layers of
materialized views, e.g., a fact table of fine-
grained performance statistics, the performance
statistics rolled up to a coarser granularity, the
rolled-up table joined with a summary of error
reports, and so on. Some views are more
important than others and are assigned higher
priorities. For example, in the context of network
data, responding to error alerts is critical for
maintaining a reliable network, while loading
performance statistics is not. We also need to
prioritize tables that server as sources to a large
number of materialized views. If such a table is
updated, not only does it reduce its own staleness,
but it also leads to updates of other tables. [36]

Heterogeneity and non-preemptibility.
Different streams may have widely different
inter-arrival times and data volumes. For
example, a streaming feed may produce data
every minute, while a dump from an OLTP
database may arrive once per day. This kind of
heterogeneity makes real-time scheduling
difficult. Suppose that we have three recurring
update jobs, the first two being short jobs that
arrive every ten time units and take two time
units each to complete, and the third being a long
job that arrives every 100 time units and takes 20
time units to complete. The expected system
utilization of these jobs is only 60 percent – in an
interval of length 100. We spend 20 time units on
the long job, plus 2*10=20 time units on ten
instances of each of the short jobs. However,
serially executing these jobs starves the short
ones whenever the long one is being executed.

SCHEDULING OF UPDATES IN DATA WAREHOUSES

P. URMILA, et al. 364

This is because the execution time of the long job
is longer than the inter-arrival time of the short
ones. This means that tables or views whose
update jobs are short may have high staleness.
However, short jobs correspond to tables that are
updated often, which are generally important.
One way to deal with a heterogeneous workload
is to allow preemptions. However, data
warehouse updates are difficult to preempt for
several reasons. For one, they use significant non-
CPU resources such as memory, disk I/Os, file
locks and so on. Also, updates may involve
complex ETL processes, parts of which may be
implemented outside the database. [36]

Another solution is to schedule a bounded
number of update jobs in parallel. There are two
variants of parallel scheduling. In partitioned
scheduling, we cluster similar jobs together and
assign dedicated resources (e.g, CPUs and /or
disks) to each cluster [27]. In global scheduling,
multiple jobs can run at the same time, but they
use the same set of resources. Clustering jobs
according to their lengths can protect short jobs
from being blocked by long ones, but it is
generally less efficient than global scheduling
since one partition may have a queue of pending
jobs while another partition is idle [4] [12].
Furthermore adding parallelism to scheduling
problems generally makes the problems more
difficult; tractable scheduling problems become
intractable, real-time guarantees loosen, and so
on [11]. The real-time community has developed
the notion of fair scheduling for real-time
scheduling on multi-processors [5].

Transient overload.
Streaming warehouses are inherently subject to
overload in the same way the DSMSs are. For
example, in a network data warehouse, a network
problem will generally lead to a significantly
increased volume of data flowing into the
warehouse. At the same time, the volume of
queries will increase as network managers
attempt to understand and deal with the event. A

common way to deal with transient overload in a
real-time system is to temporarily discard jobs.
Discarding some data is acceptable in a DSMS
that evaluates simple queries in a single pass and
does not store any data persistently [31].

SYSTEM MODEL

Warehousing Architecture
Figure illustrates a streaming data warehouse.
Each data stream is generated by an external
source, with a batch of new data, consisting of
one or more records, being pushed to the
warehouse with period pi. If the period of a
stream is unknown or unpredictable, we let the
user choose a period with which the warehouse
should check for new data. Examples of streams
collected by an Internet Service Provider include
router performance statistics such as CPU usage;
system logs; routing table updates; link layer
alerts, etc. An important property of the data
streams in our motivating applications is that they
are append-only, i.e., existing records are never
modified or deleted. For example, a stream of
average router CPU utilization measurement may
consist of records with fields (timestamp,
router_name, CPU_utilization), and a new data
file with updated CPU measurement for each
router may arrive at the warehouse every five
minutes. [36]

Figure: Stream data warehouse [36]

A streaming data warehouse maintains two types
of tables: base and derived. Each table may be

SCHEDULING OF UPDATES IN DATA WAREHOUSES

P. URMILA, et al. 365

stored partially or wholly on disk. A base table is
loaded directly from a data stream. A derived
table is materialized view defined over one or
more (base or derived) tables. Each base or
derived table Tj has a user-defined priority pj and
a time-dependent staleness function Sj(τ).
Relationships among source and derived table
form a dependency graph. For each table Tj, we
define a set of its ancestor tables as those which
directly or indirectly serve as its sources, and a
set of its dependent tables as those which are
directly or indirectly sourced from Tj. For
example, T1, T2 and T3 are ancestors of T4, and T3
and T4 are dependents of T1. When new data
arrive on stream i, an update job Ji is released,
whose purpose is to execute the ETL tasks, load
the new data into the corresponding base table Ti,
and update any indices. When this update job is
completed, update jobs are released for all tables
directly sourced from Ti in order to propagate the
new data that have been loaded into Ti. When
those jobs are completed, update jobs for the
remaining dependent tables are released in the
breadth-first order specified by the dependency
graph. Each update job is modeled as an atomic,
non-preemptible task. The purpose of an update
scheduler is to decide which of the released
update jobs to execute next; as mentioned earlier,
the need for resource control prevents us from
always executing update jobs as soon as they are
released. The external sources push append-only
data streams into the warehouse with a wide
range of inter-arrival times. [36]
This proposed system allows business to make
decisions in real time. This data stream
management system supports simple analyses on
recently arrived data in real time.
On-Line stock trading, where recent transactions
generated by multiple stock exchange are
compared against historical trend in nearly real
time to identify profit opportunities in the
proposed system.
The traditional data warehouses are typically
refreshed during downtimes, streaming

warehouses are updated as new data arrive.
Where traditional data warehouse store layers of
complex materialized views over terabytes of
historical data. This existing system does not
support to make decisions in real time and
immediately. This existing system not suitable for
data warehouse maintenance. This Existing
system will not suitable for online scheduling
problem. Because it does not allow to take
immediate decisions.
It does not support various warehouse
maintenance policies such as immediate, deferred
and periodic.

It enables real time decision support for
business critical applications.
It is used to compare multiple stock exchanges
against historical trends in nearly real time to
identify profit, performance, defect and loss.
Data stream management system support simple
analyses on recently arrived data in real time.

CONCLUSION
We solved the problem of scheduling updates in a
real-time streaming warehouse. We projected the
notion of averages staleness as a scheduling
metric and presented scheduling algorithms
designed to handle complex environment of a
streaming data warehouse.

We then proposed a scheduling framework that
assigns jobs to processing tracks and also uses the
basic algorithms to schedule jobs within a same.

REFERENCE

1. Tamassia, R., Triandopoulos, N. Efficient Content

Authentication over Distributed Hash Tables.
ACNS, 2007.

2. Tao, Y., Yi, K., Sheng, C., Kalnis, P. Quality and
Efficiency in High Dimensional Nearest Neighbor
Search. SIGMOD, 2009

3. Korn,F.,Sidiropoulos,N.,Faloutsos,C.,Siegel,E.,Pr
otopapas,Z.Fast Nearest Neighbor Search in
Medical Image Databases. VLDB, 1996.

SCHEDULING OF UPDATES IN DATA WAREHOUSES

P. URMILA, et al. 366

4. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft,
U. When is Nearest Neighbor Meaningful?
ICDT,1999.

5. Keogh, E.,J., Ratanamahatana,C., A.Exact
Indexing of Dynamic Time Warping. Knowl. Inf.
Syst., 7(3), 2005.

6. Scalable Scheduling of Updates in Streaming
Data Warehouses Lukasz Golab, Theodore
Johnson and Vladislav Shkapenyuk AT&T Labs –
Research, Florham Park, NJ, 07932, USA
{lgolab,johnsont,vshkap}@research.att.com

7. A Burns. Scheduling hard real-time systems: a
review, software Engineering Journal, 6(3):116-
128 (1991).

8. D.Carney, U.Cetintemel, A Rasin, S. Zdonik, M.
Chermiack, and M Stonebraker, Operator
scheduling in a data stream manager, VLDB
2003, 838-849.

9. J.Cho and H. Garcia-Molina, synchronizing a
database to improve freshness, SIGMOD 2000,
117-128.

10. L.Colby, A.Kawaguchi, D. Lieuwen, I .Mumick,
and K.Ross, Supporting multiple view
maintenance policies, SIGMOD 1997, 405-416.

11. M.Dertouzos and A.Mok, Multiprocessor on-line
scheduling of hard-real-time tasks, IEEE Trans.
On Software. Eng., 15(12):1497-1506 (1989).

12. U.Devi and J.Anderson Tardiness bounds under
global EDF scheduling Real-Time Systems,
38(2):133-189 (2008).

13. N.Folkert, A.Gupta, A.Witkowski,
S.Subramanian, S.Bellamkonda, S.Shankar,
T.Bozkaya, and L.Sheng, Optimizing refresh of a
set of materialized views, VLDB 2005, 1043-
1054.

14. M.Garey and D.Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, New York:W.H. Freeman, 1979.

15. L.Golab, T.Johnson, J.S.Seidel, and
V.Shkapenyuk, Stream warehousing with
DataDepot, SIGMOD 2009, 847-854.

16. L.Golab, T.Johnson, and V.Shkapenyuk,
Scheduling updates in a real-time stream
warehouse, ICDE 2009, 1207-1210.

17. H.Guo, P.A. Larson, R.Ramakrishnan, and
J.Goldstein, Relaxed currency and consistency:
How to say “good enough” in SQL, SIGMOD
2004, 815-826.

18. A Gupta and I. Mumick, Maintenance of
materialized views: Problems, techniques, and
applications, In IEEE Data Eng. Bulletin, Special
Issue on Materialized Views and Data
Warehousing, 18(2):3-18 (1995).

19. M.Hammand, M.Franklin, W.Aref, and
A.Elmagarmid, Scheduling for shared window
joins over data streams, VLDB 2003, 297-308.

20. K.D. kang, S.Son, and J.Stankovic, Managing
deadline miss ratio and sensor data freshness in
real-time databases, IEEE Trans. On Knowledge
and Data Eng., 16(10):1200-1216(2004).

21. B.Kao and H.Garcia-Molina, An overview of real-
time database systems, In Advances in Real-Time
Systems (ed. S.H. Son), 463-486, Prentice Hall,
1995.

22. G.Koren, D.Shasha Dover, an optimal on-line
scheduling algorithm for an overloaded real-time
system, RTSS 1992, 292-299.

23. G.Koren, D.Shasha. An approach to handling
overloaded systems that allow skips, RTSS 1995,
110-119.

24. Y.K. Kwok and I. Ahmad, Static scheduling
algorithms for allocating directed task graphs to
multiprocessors, ACM Computing Surveys,
31(4):406-471(1999).

25. W.Labio, R. Yemeni, and H Garcia-Molina,
Shrinking the warehouse update window,
SIGMOD 1999, 383-394.

26. A. Labrinidis and N. Roussopoulos, Update
propagation strategies for improving the quality of
data on the Web, VLDB 2001, 391-400

27. Y. Oh and S.H. Son Tight performance bounds of
heuristics for a real-time scheduling problem Tech
report CS-93-24, U. Virginia (1993).

28. N.Polyzotis, S.Skiadopoulos, P.vassiliadis,
A.Simitsis, and N-E Frantzell, Supporting
Streaming Updates in an Active Data Warehouse,
ICDE 2007, 476-485.

29. M.Sharaf, P.Chrysanthis, A. Labrinidis, and K
Pruhs, Algorithms and metrics for processing
multiple heterogeneous continuous queries, ACM
Trans. On Database Sys, 33(1) (2008).

30. R. Srinivasan, C. Liang, and K. Ramamritham,
Maintaining temporal coherency of virtual data
warehouses, RTSS 1998, 60-70.

31. N.Tatbul, U.Cetintemel, S.Zdonik, M.Chemiack,
and M. Stonebraker, Load shedding in a data
stream manager, VLDB 2003, 309-320.

SCHEDULING OF UPDATES IN DATA WAREHOUSES

P. URMILA, et al. 367

32. C. Thomsen, T.B.Pedersen, and W.Lehner, RiTe
Providing on-demand data for right-time data
warehousing, ICDE 2008, 456-465.

33. P.Tucker, Punctuated Data Streams, Ph.D Thesis,
Oregon Health & Science University, 2005.

34. H. Qu and A. Labrinidis, Preference-aware query
and update scheduling in Web-databases, ICDE
2007, 356-365.

35. Y.Zhuge, J. Wiener, and H.Garcia-Molina,
Multiple view consistency for data warehousing,
ICDE 1997, 289-300.

36. Scalable Scheduling of Updates in Streaming
Data Warehouses Lukasz Golab, Theodore
Johnson and Vladislav Shkapenyuk AT&T Labs –
Research, Florham Park, NJ, 07932,
USA{lgolab,johnsont,vshkap}@research.att.com

37. Lukasz Golab and Theodore Johnson,
Consistency in a Stream Warehouse, 5th Biennial
Conference on Innovative Data Systems Research
(CIDR ‘11) January 9-12, 2011, Asilomar,
California, USA.

