627 research outputs found

    Ultraluminous Quasars At High Redshift Show Evolution In Their Radio-Loudness Fraction In Both Redshift And Ultraviolet Luminosity

    Full text link
    We take a sample of 94 ultraluminous, optical quasars from the search of over 14,486 deg^2 by Onken et al. 2022 in the range 4.4<redshift<5.2 and match them against the Rapid ASKAP Continuum Survey (RACS) observed on the Australian Square Kilometre Array Pathfinder (ASKAP). From this most complete sample of the bright end of the redshift ~5 quasar luminosity function, there are 10 radio continuum detections of which 8 are considered radio-loud quasars. The radio-loud fraction for this sample is 8.5 \pm 2.9 per cent. Jiang et al. 2007 found that there is a decrease in the radio-loud fraction of quasars with increasing redshift and an increase with increasing absolute magnitude at rest frame 2500 Angstroms. We show that the radio-loud fraction of our quasar sample is consistent with that predicted by Jiang et al. 2007, extending their result to higher redshifts.Comment: Accepted by MNRA

    Wirksame Betonzugfestigkeit im Bauwerk bei früh einsetzendem Temperaturzwang: Forschungsbericht

    Get PDF

    History of Hydrogen Reionization in the Cold Dark Matter Model

    Full text link
    We calculate the reionization history in Cold Dark Matter (CDM) models. The epoch of the end of reionization and the Thomson scattering optical depth to the cosmic microwave background depend on the power spectrum amplitude on small scales and on the ionizing photon emissivity per unit mass in collapsed halos. We calibrate the emissivity to reproduce the measured ionizing background intensity at z=4. Models in which all CDM halos have either a constant emissivity or a constant energy emitted per Hubble time, per unit mass, predict that reionization ends near z~6 and the optical depth is in the range 0.05 < tau_e < 0.09, consistent with WMAP results at the 1 to 2 sigma level. If the optical depth is as high as 0.17 (as suggested by WMAP), halos of velocity dispersion ~ 3-30 km/s at z>15 must have ionizing emissivities per unit mass larger by a factor >~ 50 compared to the more massive halos that produce the ionizing emissivity at z=4. This factor increases to 100 if the CDM power spectrum amplitude is required to agree with the Croft et al. (2002) measurement from the Lyman alpha forest. If tau_e >~ 0.17 were confirmed, a higher ionizing emissivity at z>15 compared to z=4 might arise from an enhanced star formation rate or quasar abundance per unit mass and an increased escape fraction for ionizing photons; the end of reionization could have been delayed to z~6 because of the suppression of gas accretion and star formation in low-mass halos as the medium was reionized.Comment: 19 pages, 4 figues, submitted to Ap

    Konstitutives Stoffmodell für jungen Beton : Forschungsbericht / F. S. Rostásy ; P. Onken

    Get PDF

    Hydrography and circulation west of Sardinia in June 2014

    Get PDF
    In the frame of the REP14-MED sea trial in June 2014, the hydrography and circulation west of Sardinia, observed by means of gliders, shipborne CTD (conductivity, temperature, depth) instruments, towed devices, and vessel-mounted ADCPs (acoustic doppler current profilers), are presented and compared with previous knowledge. So far, the circulation is not well-known in this area, and the hydrography is subject to long-term changes. Potential temperature, salinity, and potential density ranges as well as core values of the observed water masses were determined. Modified Atlantic Water (MAW), with potential density anomalies below 28.72 kg m−3, showed a salinity minimum of 37.93 at 50 dbar. Levantine Intermediate Water (LIW), with a salinity maximum of about 38.70 at 400 dbar, was observed within a range of 28.72<σΘ/(kg m−3) < 29.10. MAW and LIW showed slightly higher salinities than previous investigations. During the trial, LIW covered the whole area from the Sardinian shelf to 7°15′ E. Only north of 40° N was it tied to the continental slope. Within the MAW, a cold and saline anticyclonic eddy was observed in the southern trial area. The strongest variability in temperature and salinity appeared around this eddy, and in the southwestern part of the domain, where unusually low saline surface water entered the area towards the end of the experiment. An anticyclonic eddy of Winter Intermediate Water was recorded moving northward at 0.014 m s−1. Geostrophic currents and water mass transports calculated across zonal and meridional transects showed a good agreement with vessel-mounted ADCP measurements. Within the MAW, northward currents were observed over the shelf and offshore, while a southward transport of about 1.5 Sv occurred over the slope. A net northward transport of 0.38 Sv across the southern transect decreased to zero in the north. Within the LIW, northward transports of 0.6 Sv across the southern transects were mainly observed offshore, and decreased to 0.3 Sv in the north where they were primarily located over the slope. This presentation of the REP14-MED observations helps to further understand the long-term evolution of hydrography and circulation in the Western Mediterranean, where considerable changes occurred after the Eastern Mediterranean Transient and the Western Mediterranean Transition

    Understanding Neural Population Coding: Information Theoretic Insights from the Auditory System

    Get PDF
    In recent years, our research in computational neuroscience has focused on understanding how populations of neurons encode naturalistic stimuli. In particular, we focused on how populations of neurons use the time domain to encode sensory information. In this focused review, we summarize this recent work from our laboratory. We focus in particular on the mathematical methods that we developed for the quantification of how information is encoded by populations of neurons and on how we used these methods to investigate the encoding of complex naturalistic sounds in auditory cortex. We review how these methods revealed a complementary role of low frequency oscillations and millisecond precise spike patterns in encoding complex sounds and in making these representations robust to imprecise knowledge about the timing of the external stimulus. Further, we discuss challenges in extending this work to understand how large populations of neurons encode sensory information. Overall, this previous work provides analytical tools and conceptual understanding necessary to study the principles of how neural populations reflect sensory inputs and achieve a stable representation despite many uncertainties in the environment

    Observational Limits on Type 1 AGN Accretion Rate in COSMOS

    Full text link
    We present black hole masses and accretion rates for 182 Type 1 AGN in COSMOS. We estimate masses using the scaling relations for the broad Hb, MgII, and CIV emission lines in the redshift ranges 0.16<z<0.88, 1<z<2.4, and 2.7<z<4.9. We estimate the accretion rate using an Eddington ratio L_I/L_Edd estimated from optical and X-ray data. We find that very few Type 1 AGN accrete below L_I/L_Edd ~ 0.01, despite simulations of synthetic spectra which show that the survey is sensitive to such Type 1 AGN. At lower accretion rates the BLR may become obscured, diluted or nonexistent. We find evidence that Type 1 AGN at higher accretion rates have higher optical luminosities, as more of their emission comes from the cool (optical) accretion disk with respect to shorter wavelengths. We measure a larger range in accretion rate than previous works, suggesting that COSMOS is more efficient at finding low accretion rate Type 1 AGN. However the measured range in accretion rate is still comparable to the intrinsic scatter from the scaling relations, suggesting that Type 1 AGN accrete at a narrow range of Eddington ratio, with L_I/L_Edd ~ 0.1.Comment: Accepted for pulication in ApJ. 7 pages, 5 figures, table 1 available on reques

    Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database

    Get PDF
    We present improved black hole masses for 35 active galactic nuclei (AGNs) based on a complete and consistent reanalysis of broad emission-line reverberation-mapping data. From objects with multiple line measurements, we find that the highest precision measure of the virial product is obtained by using the cross-correlation function centroid (as opposed to the cross-correlation function peak) for the time delay and the line dispersion (as opposed to full width half maximum) for the line width and by measuring the line width in the variable part of the spectrum. Accurate line-width measurement depends critically on avoiding contaminating features, in particular the narrow components of the emission lines. We find that the precision (or random component of the error) of reverberation-based black hole mass measurements is typically around 30%, comparable to the precision attained in measurement of black hole masses in quiescent galaxies by gas or stellar dynamical methods. Based on results presented in a companion paper by Onken et al., we provide a zero-point calibration for the reverberation-based black hole mass scale by using the relationship between black hole mass and host-galaxy bulge velocity dispersion. The scatter around this relationship implies that the typical systematic uncertainties in reverberation-based black hole masses are smaller than a factor of three. We present a preliminary version of a mass-luminosity relationship that is much better defined than any previous attempt. Scatter about the mass-luminosity relationship for these AGNs appears to be real and could be correlated with either Eddington ratio or object inclination.Comment: 61 pages, including 8 Tables and 16 Figures. Accepted for publication in The Astrophysical Journa
    corecore