494 research outputs found

    Three resilient megastructures by Pier Luigi Nervi

    Get PDF
    Resilience, as the ability of a structure to withstand threats and continue to function, it is normally related to durability and performance to accepted standards over time. The resilience of a structure can be threatened by poor design, changes in the public's perception of style, the potential for a change-in-use and structural attack; catastrophic events such as fire, explosion or impact are usually considered the main threats for Resilience. In the contemporary built environment Resilience is considered increasingly important; it has, in fact, become one of the major design issues, especially for large, iconic or public and prominent structures: this has not always been the case. Following the Second World War, building designers faced the necessity to conceive projects within severe financial constraints, hence the proliferation of a low quality and limited life-span structures; buildings which were designed to be replaceable, cheap and perhaps anonymous. This was thought to be an effec-tive answer to quickly accommodate the large number of people moving towards the urban environment partly destroyed by the WWII. These very buildings now constitute the backbone of our urban scenery and although some still function adequately, many are perfect examples of structures which exhibit a lack of re-silience. Fortunately, there were a few designers who refused this post-war tendency and attempted to design lasting structures of quality: most of them were engineers. This is not a coincidence, engineers had less to do with the issue of providing residential accommodations and more with the erection of large structures which necessitated a higher quality control on materials and technologies: Pier Luigi Nervi was one of them. This work considers three large structures designed and built fifty years ago,in 1961, by the Italian engineer. The structures are the Bus Station at the George Washington Bridge in New York (USA); The Burgo Paper Mill in Mantua (Italy); and the Palace of Labour in Turin (Italy). All of these buildings are hybrid structures (concrete and steel), an unusual choice for Nervi that perhaps reects the design climate at the time; These buildings reacted quite differently to the events that have occurred over the past half century. One of the key factors to achieve resilience it is considered to be the quality of the buildings, which includes their ability to perform maintenance. The lack of which for whatever reason, this paper aims to demonstrate, will inevitably result in a weak performance in terms of resilience on the long run

    Acetaldehyde binding energies: a coupled experimental and theoretical study

    Get PDF
    Acetaldehyde is one of the most common and abundant gaseous interstellar complex organic molecules, found in cold and hot regions of the molecular interstellar medium. Its presence in the gas-phase depends on the chemical formation and destruction routes, and its binding energy (BE) governs whether acetaldehyde remains frozen onto the interstellar dust grains or not. In this work, we report a combined study of the acetaldehyde BE obtained via laboratory TPD (Temperature Programmed Desorption) experiments and theoretical quantum chemical computations. BEs have been measured and computed as a pure acetaldehyde ice and as mixed with both polycrystalline and amorphous water ice. Both calculations and experiments found a BE distribution on amorphous solid water that covers the 4000--6000 K range, when a pre-exponential factor of 1.1×1018s11.1\times 10^{18}s^{-1} is used for the interpretation of the experiments. We discuss in detail the importance of using a consistent couple of BE and pre-exponential factor values when comparing experiments and computations, as well as when introducing them in astrochemical models. Based on the comparison of the acetaldehyde BEs measured and computed in the present work with those of other species, we predict that acetaldehyde is less volatile than formaldehyde, but much more than water, methanol, ethanol, and formamide. We discuss the astrochemical implications of our findings and how recent astronomical high spatial resolution observations show a chemical differentiation involving acetaldehyde, which can easily explained as due to the different BEs of the observed molecules.Comment: 12 pages, 6 figure

    The novel CXCR4 antagonist POL5551 mobilizes hematopoietic stem and progenitor cells with greater efficiency than Plerixafor

    Get PDF
    Mobilized blood has supplanted bone marrow (BM) as the primary source of hematopoietic stem cells for autologous and allogeneic stem cell transplantation. Pharmacologically enforced egress of hematopoietic stem cells from BM, or mobilization, has been achieved by directly or indirectly targeting the CXCL12/CXCR4 axis. Shortcomings of the standard mobilizing agent, granulocyte colony-stimulating factor (G-CSF), administered alone or in combination with the only approved CXCR4 antagonist, Plerixafor, continue to fuel the quest for new mobilizing agents. Using Protein Epitope Mimetics technology, a novel peptidic CXCR4 antagonist, POL5551, was developed. In vitro data presented herein indicate high affinity to and specificity for CXCR4. POL5551 exhibited rapid mobilization kinetics and unprecedented efficiency in C57BL/6 mice, exceeding that of Plerixafor and at higher doses also of G-CSF. POL5551-mobilized stem cells demonstrated adequate transplantation properties. In contrast to G-CSF, POL5551 did not induce major morphological changes in the BM of mice. Moreover, we provide evidence of direct POL5551 binding to hematopoietic stem and progenitor cells (HSPCs) in vivo, strengthening the hypothesis that CXCR4 antagonists mediate mobilization by direct targeting of HSPCs. In summary, POL5551 is a potent mobilizing agent for HSPCs in mice with promising therapeutic potential if these data can be orroborated in humans

    An overview of historical and contemporary concrete shells, their construction and factors in their general disappearance

    Get PDF
    Only through understanding why concrete shells’ loss in popularity over the course of modern history can designers be equipped with the skills to create and apply this type of construction. Through modifications to design processes, construction stages, material understanding and relevant formwork improvements will architects and designers be able to meet the demands of the 21st century and beyond. To understand why concrete shells are no longer commonly built is to understand its construction process. An amorphous material, the fundamental relationship between formwork and the resultant concrete shell needs to be raised, appreciated, understood and analyzed for a holistic understanding of concrete shells. Through understanding this, issues and factors affecting concrete shells can be tackled and designed out in reviving this type of structures because they can be efficient in structural performance, economical in cost and provide high aesthetic value. This paper discusses concrete shells as an architectural solution by asking the question to what constituted their popularity and factors that led to their demise in the modern age of technological advancement, construction process and environmental concerns. This paper presents a cultural perspective and an overview of seminal, historical and contemporary concrete shells so as to bring about a renaissance of such structures in our built environment once again because of all the benefits it can offer.</p

    Sequential valproic acid/all-trans retinoic acid treatment reprograms differentiation in refractory and high risk acute myeloid leukemia.

    Get PDF
    Epigenetic alterations of chromatin due to aberrant histone deacetylase (HDAC) activity and transcriptional silencing of all-trans retinoic acid (ATRA) pathway are events linked to the pathogenesis of acute myeloid leukemia (AML) that can be targeted by specific treatments. A pilot study was carried out in eight refractory or high-risk AML patients not eligible for intensive therapy to assess the biological and therapeutic activities of the HDAC inhibitor valproic acid (VPA) used to remodel chromatin, followed by the addition of ATRA, to activate gene transcription and differentiation in leukemic cells. Hyperacetylation of histones H3 and H4 was detectable at therapeutic VPA serum levels (>or=50 microg/mL) in blood mononuclear cells from seven of eight patients. This correlated with myelomonocytic differentiation of leukemic cells as revealed by morphologic, cytochemical, immunophenotypic, and gene expression analyses. Differentiation of the leukemic clone was proven by fluorescence in situ hybridization analysis showing the cytogenetic lesion +8 or 7q- in differentiating cells. Hematologic improvement, according to established criteria for myelodysplastic syndromes, was observed in two cases. Stable disease and disease progression were observed in five and one cases, respectively. In conclusion, VPA-ATRA treatment is well tolerated and induces phenotypic changes of AML blasts through chromatin remodeling. Further studies are needed to evaluate whether VPA-ATRA treatment by reprogramming differentiation of the leukemic clone might improve the response to chemotherapy in leukemia patients

    Bone Marrow Stromal Cells Modulate Mouse ENT1 Activity and Protect Leukemia Cells from Cytarabine Induced Apoptosis

    Get PDF
    BACKGROUND: Despite a high response rate to chemotherapy, the majority of patients with acute myeloid leukemia (AML) are destined to relapse due to residual disease in the bone marrow (BM). The tumor microenvironment is increasingly being recognized as a critical factor in mediating cancer cell survival and drug resistance. In this study, we propose to identify mechanisms involved in the chemoprotection conferred by the BM stroma to leukemia cells. METHODS: Using a leukemia mouse model and a human leukemia cell line, we studied the interaction of leukemia cells with the BM microenvironment. We evaluated in vivo and in vitro leukemia cell chemoprotection to different cytotoxic agents mediated by the BM stroma. Leukemia cell apoptosis was assessed by flow cytometry and western blotting. The activity of the equilibrative nucleoside transporter 1 (ENT1), responsible for cytarabine cell incorporation, was investigated by measuring transport and intracellular accumulation of (3)H-adenosine. RESULTS: Leukemia cell mobilization from the bone marrow into peripheral blood in vivo using a CXCR4 inhibitor induced chemo-sensitization of leukemia cells to cytarabine, which translated into a prolonged survival advantage in our mouse leukemia model. In vitro, the BM stromal cells secreted a soluble factor that mediated significant chemoprotection to leukemia cells from cytarabine induced apoptosis. Furthermore, the BM stromal cell supernatant induced a 50% reduction of the ENT1 activity in leukemia cells, reducing the incorporation of cytarabine. No protection was observed when radiation or other cytotoxic agents such as etoposide, cisplatin and 5-fluorouracil were used. CONCLUSION: The BM stroma secretes a soluble factor that significantly protects leukemia cells from cytarabine-induced apoptosis and blocks ENT1 activity. Strategies that modify the chemo-protective effects mediated by the BM microenvironment may enhance the benefit of conventional chemotherapy for patients with AML
    corecore