113 research outputs found

    Functional imaging studies of cognition using 99mTc-HMPAO SPECT: empirical validation using the n-back working memory paradigm

    Get PDF
    {Purpose} Functional activation protocols are widely applied for the study of brain-cognition relations. Only few take advantage of the intrinsic characteristics of SPECT, particularly those allowing cognitive assessment outside of the camera, in settings close to the standard clinical or laboratory ones. The purpose of the study was to assess the feasibility of a split-dose activation protocol with 99mTc-HMPAO using low irradiation dose. {Materials and methods} A two-scans protocol was applied to 12 healthy young volunteers using 270 MBq of 99mTc-HMPAO per scan, with each image associated to a particular experimental condition of the verbal {n}-back working memory task (0-back, 2-back). Subtraction method was used to identify regional brain activity related to the task. {Results} Voxel-wise statistical analysis showed left lateralized activity associated with the 2-back task, compared to the 0-back task. Activated regions, mainly prefrontal and parietal, were similar to those observed in previous fMRI and 15O-PET studies. {Conclusion} The results support the use of 99mTc-HMPAO SPECT for the investigation of brain-cognition relations and demonstrate the feasibility of optimal quality images despite low radiopharmaceutical doses. The findings also acknowledge the use of HMPAO as a radioligand to capture neuro-energetic modulations linked to cognitive activity. They encourage extending the application of the described activation protocol to clinical populations

    Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology

    Get PDF
    Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique organoids and patient-derived orthotopic xenografts (PDOX) of various glioma subtypes, including gliomas with mutations in IDH1, and paired longitudinal PDOX from primary and recurrent tumors of the same patient. We show that glioma PDOXs enable long-term propagation of patient tumors and represent clinically relevant patient avatars that retain histopathological, genetic, epigenetic, and transcriptomic features of parental tumors. We find no evidence of mouse-specific clonal evolution in glioma PDOXs. Our cohort captures individual molecular genotypes for precision medicine including mutations in IDH1, ATRX, TP53, MDM2/4, amplification of EGFR, PDGFRA, MET, CDK4/6, MDM2/4, and deletion of CDKN2A/B, PTCH, and PTEN. Matched longitudinal PDOX recapitulate the limited genetic evolution of gliomas observed in patients following treatment. At the histological level, we observe increased vascularization in the rat host as compared to mice. PDOX-derived standardized glioma organoids are amenable to high-throughput drug screens that can be validated in mice. We show clinically relevant responses to temozolomide (TMZ) and to targeted treatments, such as EGFR and CDK4/6 inhibitors in (epi)genetically defined subgroups, according to MGMT promoter and EGFR/CDK status, respectively. Dianhydrogalactitol (VAL-083), a promising bifunctional alkylating agent in the current clinical trial, displayed high therapeutic efficacy, and was able to overcome TMZ resistance in glioblastoma. Our work underscores the clinical relevance of glioma organoids and PDOX models for translational research and personalized treatment studies and represents a unique publicly available resource for precision oncology

    Harnessing LRIG1-mediated Inhibition of Receptor Tyrosine Kinases for Cancer Therapy

    Get PDF
    Leucine-rich repeats and immunoglobulin-like domains containing protein 1 (LRIG1) is an endogenous feedback regulator of receptor tyrosine kinases (RTKs) and was recently shown to inhibit growth of different types of malignancies. Additionally, this multifaceted RTK inhibitor was reported to be a tumor suppressor, a stem cell regulator, and a modulator of different cellular phenotypes. This mini-review provides a concise and up-to-date summary about the known functions of LRIG1 and its related family members, with a special emphasis on underlying molecular mechanisms and the opportunities for harnessing its therapeutic potential against cancer
    • …
    corecore