70 research outputs found

    A nonvolatile phase-change metamaterial color display

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record.Chalcogenide phase-change materials, which exhibit a marked difference in their electrical and optical properties when in their amorphous and crystalline phases and can be switched between these phases quickly and repeatedly, are traditionally exploited to deliver nonvolatile data storage in the form of rewritable optical disks and electrical phase-change memories. However, exciting new potential applications are now emerging in areas such as integrated phase-change photonics, phase-change optical metamaterials/metasurfaces, and optoelectronic displays. Here, ideas from these last two fields are fused together to deliver a novel concept, namely a switchable phase-change metamaterial/metasurface resonant absorber having nonvolatile color generating capabilities. With the phase-change layer, here GeTe, in the crystalline phase, the resonant absorber can be tuned to selectively absorb the red, green, and blue spectral bands of the visible spectrum, so generating vivid cyan, magenta, and yellow pixels. When the phase-change layer is switched into the amorphous phase, the resonant absorption is suppressed and a flat, pseudowhite reflectance results. Thus, a route to the potential development is opened-up of nonvolatile, phase-change metamaterial color displays and color electronic signage.Engineering and Physical Sciences Research Council (EPSRC

    Neutrophils can Promote Clotting via FXI and Impact Clot Structure via Neutrophil Extracellular Traps in a Distinctive Manner in vitro

    Get PDF
    Neutrophils and neutrophil extracellular traps (NETs) have been shown to be involved in coagulation. However, the interactions between neutrophils or NETs and fibrin(ogen) in clots, and the mechanisms behind these interactions are not yet fully understood. In this in vitro study, the role of neutrophils or NETs on clot structure, formation and dissolution was studied with a combination of confocal microscopy, turbidity and permeation experiments. Factor (F)XII, FXI and FVII-deficient plasmas were used to investigate which factors may be involved in the procoagulant effects. We found both neutrophils and NETs promote clotting in plasma without the addition of other coagulation triggers, but not in purified fibrinogen, indicating that other factors mediate the interaction. The procoagulant effects of neutrophils and NETs were also observed in FXII- and FVII-deficient plasma. In FXI-deficient plasma, only the procoagulant effects of NETs were observed, but not of neutrophils. NETs increased the density of clots, particularly in the vicinity of the NETs, while neutrophils-induced clots were less stable and more porous. In conclusion, NETs accelerate clotting and contribute to the formation of a denser, more lysis resistant clot architecture. Neutrophils, or their released mediators, may induce clotting in a different manner to NETs, mediated by FXI

    A nonvolatile phase‐change metamaterial color display

    No full text
    Chalcogenide phase‐change materials, which exhibit a marked difference in their electrical and optical properties when in their amorphous and crystalline phases and can be switched between these phases quickly and repeatedly, are traditionally exploited to deliver nonvolatile data storage in the form of rewritable optical disks and electrical phase‐change memories. However, exciting new potential applications are now emerging in areas such as integrated phase‐change photonics, phase‐change optical metamaterials/metasurfaces, and optoelectronic displays. Here, ideas from these last two fields are fused together to deliver a novel concept, namely a switchable phase‐change metamaterial/metasurface resonant absorber having nonvolatile color generating capabilities. With the phase‐change layer, here GeTe, in the crystalline phase, the resonant absorber can be tuned to selectively absorb the red, green, and blue spectral bands of the visible spectrum, so generating vivid cyan, magenta, and yellow pixels. When the phase‐change layer is switched into the amorphous phase, the resonant absorption is suppressed and a flat, pseudowhite reflectance results. Thus, a route to the potential development is opened‐up of nonvolatile, phase‐change metamaterial color displays and color electronic signage

    Pseudomonas aeruginosa pulmonary infection results in S100A8/A9-dependent cardiac dysfunction.

    No full text
    Pseudomonas aeruginosa (P.a.) infection accounts for nearly 20% of all cases of hospital acquired pneumonia with mortality rates >30%. P.a. infection induces a robust inflammatory response, which ideally enhances bacterial clearance. Unfortunately, excessive inflammation can also have negative effects, and often leads to cardiac dysfunction with associated morbidity and mortality. However, it remains unclear how P.a. lung infection causes cardiac dysfunction. Using a murine pneumonia model, we found that P.a. infection of the lungs led to severe cardiac left ventricular dysfunction and electrical abnormalities. More specifically, we found that neutrophil recruitment and release of S100A8/A9 in the lungs activates the TLR4/RAGE signaling pathways, which in turn enhance systemic inflammation and subsequent cardiac dysfunction. Paradoxically, global deletion of S100A8/A9 did not improve but aggravated cardiac dysfunction and mortality likely due to uncontrolled bacterial burden in the lungs and heart. Our results indicate that P.a. infection induced release of S100A8/9 is double-edged, providing increased risk for cardiac dysfunction yet limiting P.a. growth
    corecore