151 research outputs found

    Rumen microbial communities influence metabolic phenotypes in lambs

    Get PDF
    The rumen microbiota is an essential part of ruminants forging their nutrition and health. Despite its importance, it is not fully understood how various groups of rumen microbes affect host-microbe relationships and functions. The aim of the study was to simultaneously explore the rumen microbiota and the metabolic phenotype of lambs for identifying host-microbe associations and potential biomarkers of digestive functions. Twin lambs, separated in two groups after birth were exposed to practices (isolation and gavage with rumen fluid with protozoa or protozoa-depleted) that differentially restricted the acquisition of microbes. Rumen microbiota, fermentation parameters, digestibility and growth were monitored for up to 31 weeks of age. Microbiota assembled in isolation from other ruminants lacked protozoa and had low bacterial and archaeal diversity whereas digestibility was not affected. Exposure to adult sheep microbiota increased bacterial and archaeal diversity independently of protozoa presence. For archaea, Methanomassiliicoccales displaced Methanosphaera. Notwithstanding, protozoa induced differences in functional traits such as digestibility and significantly shaped bacterial community structure, notably Ruminococcaceae and Lachnospiraceae lower up to 6 folds, Prevotellaceae lower by ~40%, and Clostridiaceae and Veillonellaceae higher up to 10 folds compared to microbiota without protozoa. An orthogonal partial least squares-discriminant analysis of urinary metabolome matched differences in microbiota structure. Discriminant metabolites were mainly involved in amino acids and protein metabolic pathways while a negative interaction was observed between methylotrophic methanogens Methanomassiliicoccales and trimethylamine N-oxide. These results stress the influence of gut microbes on animal phenotype and show the potential of metabolomics for monitoring rumen microbial functions

    Retrieving magma composition from TIR spectra: implications for terrestrial planets investigations

    Get PDF
    Emissivity and reflectance spectra have been investigated on two series of silicate glasses, having compositions belonging to alkaline and subalkaline series, covering the most common terrestrial igneous rocks. Glasses were synthesized starting from natural end-members outcropping at Vulcano Island (Aeolian Islands, Italy) and on Snake River Plain (USA). Results show that the shift of the spectra, by taking Christiansen feature (CF) as a reference point, is correlated with SiO2 content, the SCFM factor and/or the degree of polymerization state via the NBO/T and temperature. The more evolved is the composition, the more polymerized the structure, the shorter the wavelength at which CF is observable. CF shift is also dependent on temperature. The shape of the spectra discriminates alkaline character, and it is related to the evolution of Qn structural units. Vulcano alkaline series show larger amount of Q4 and Q3 species even for mafic samples compared to the subalkaline Snake River Plain series. Our results provide new and robust insights for the geochemical characterization of volcanic rocks by remote sensing, with the outlook to infer origin of magmas both on Earth as well as on terrestrial planets or rocky bodies, from emissivity and reflectance spectra

    Evaluating the effect of phenolic compounds as hydrogen acceptors when ruminal methanogenesis is inhibited in vitro – Part 1. Dairy cows

    Get PDF
    Some antimethanogenic feed additives for ruminants promote rumen dihydrogen (H2) accumulation potentially affecting the optimal fermentation of diets. We hypothesised that combining an H2 acceptor with a methanogenesis inhibitor can decrease rumen H2 build-up and improve the production of metabolites that can be useful for the host ruminant. We performed three in vitro incubation experiments using rumen fluid from lactating Holstein cows: Experiment 1 examined the effect of phenolic compounds (phenol, catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, and gallic acid) at 0, 2, 4, and 6 mM on ruminal fermentation for 24 h; Experiment 2 examined the combined effect of each phenolic compound from Experiment 1 at 6 mM with two different methanogenesis inhibitors (Asparagopsis taxiformis or 2-bromoethanesulfonate (BES)) for 24 h incubation; Experiment 3 examined the effect of a selected phenolic compound, phloroglucinol, with or without BES over a longer term using sequential incubations for seven days. Results from Experiment 1 showed that phenolic compounds, independently of the dose, did not negatively affect rumen fermentation, whereas results from Experiment 2 showed that phenolic compounds did not decrease H2 accumulation or modify CH4 production when methanogenesis was decreased by up to 75% by inhibitors. In Experiment 3, after three sequential incubations, phloroglucinol combined with BES decreased H2 accumulation by 72% and further inhibited CH4 production, compared to BES alone. Interestingly, supplementation with phloroglucinol (alone or in combination with the CH4 inhibitor) decreased CH4 production by 99% and the abundance of methanogenic archaea, with just a nominal increase in H2 accumulation. Supplementation of phloroglucinol also increased total volatile fatty acid (VFA), acetate, butyrate, and total gas production, and decreased ammonia concentration. This study indicates that some phenolic compounds, particularly phloroglucinol, which are naturally found in plants, could improve VFA production, decrease H2 accumulation and synergistically decrease CH4 production in the presence of antimethanogenic compounds

    The Anomalous Temperatures of Cu and Their Physical Significance. (II, 3)

    Get PDF
    The experimental evidences concerning anomalous changes of various properties of Cu, with temperature, were studied in literature, and it was found that four anomalous temperatures, including the melting point, exist, the values being 503°, 553°, 823° and 1356°K (mp), and that in these temperatures and the absolute zero, there exists a regurality as shown in the following table where the numbers in parentheses show the ratios of the intervals between the adjacent temperatures in each group. This regurality was understood by the writer to be identical ; in nature, with Lande\u27s interval rule in atomic spectra in the case of odd multiplicity, and, accordingly, it was inferred that the temperatures in each of the groups, II and I, would correspond to the components of the fine structures of the energy levels, E_1 and E_2 respectively. These levels, as well as E_3 and E_4 had been determined from experimental data, as those associated with the valence electron, their energy positions being in the order of E_1, E_2, E_3 and E_4. Further, it was considered that each of E_1 and E_2 is associated with two electrons and two atoms, hence, they may be denoted as, E_1 : (A_1, B_1) ^3D1, 2, 3 E_2 : (A_2, B_2) ^3D3, 2, 1 where A_1, B_1 and A_1, B_2 denote two pairs of atoms which associate respectively with the levels, E_1 and E_2, forming the diatomic molecules, (A_1, B_1) and (A_2, B_2). Concerning E_3 and E_4, it was assumed that, as in the case of Zn, there exist two groups of anomalies in low temperature range, which show the multiple structures of E_3 and E_4, respectively. Further it was assumed that the electrons associating with E_3 and E_4 are identical with those which associate to E_l and E_2, respectively, and they oscillate between E_1 and E_3, E_2 and E_4, respectively. Furthermore, that these oscillations take place, in resonance, in the group of the above molecules of the same kind, and, accordingly the molecules in the above group are bound mutually by the energy of the resonance exchange. On the other hand, it was proved previously that, when the electron is in E_3 or E_4, it plays the role of electric conduction, but, in E_1 or E_2, it binds the atoms firmly, and so, with the above idea the important properties of metals were explained consistently

    The Structural and Functional Capacity of Ruminal and Cecal Microbiota in Growing Cattle Was Unaffected by Dietary Supplementation of Linseed Oil and Nitrate

    Get PDF
    peer-reviewedMicroorganisms in the digestive tract of ruminants differ in their functionality and ability to use feed constituents. While cecal microbiota play an important role in post-rumen fermentation of residual substrates undigested in the rumen, limited knowledge exists regarding its structure and function. In this trial we investigated the effect of dietary supplementation with linseed oil and nitrate on methane emissions and on the structure of ruminal and cecal microbiota of growing bulls. Animals were allocated to either a CTL (control) or LINNIT (CTL supplemented with 1.9% linseed and 1.0% nitrates) diet. Methane emissions were measured using the GreenFeed system. Microbial diversity was assessed using amplicon sequencing of microbial genomic DNA. Additionally, total RNA was extracted from ruminal contents and functional mcrA and mtt genes were targeted in amplicon sequencing approach to explore the diversity of functional gene expression in methanogens. LINNIT had no effect on methane yield (g/kg DMI) even though it decreased methane production by 9% (g/day; P < 0.05). Methanobrevibacter- and Methanomassiliicoccaceae-related OTUs were more abundant in cecum (72 and 24%) compared to rumen (60 and 11%) irrespective of the diet (P < 0.05). Feeding LINNIT reduced the relative abundance of Methanomassiliicoccaceae mcrA cDNA reads in the rumen. Principal component analysis revealed significant differences in taxonomic composition and abundance of bacterial communities between rumen and cecum. Treatment decreased the relative abundance of a few Ruminococcaceae genera, without affecting global bacterial community structure. Our research confirms a high level of heterogeneity in species composition of microbial consortia in the main gastrointestinal compartments where feed is fermented in ruminants. There was a parallel between the lack of effect of LINNIT on ruminal and cecal microbial community structure and functions on one side and methane emission changes on the other. These results suggest that the sequencing strategy used here to study microbial diversity and function accurately reflected the absence of effect on methane phenotypes in bulls treated with linseed plus nitrate.This experiment is a part of a large collaborative project led by INRA granted by 11 companies: Adisseo France SAS, Agrial, Apis Gene, Deltavit, DSM Nutritional Products AG, Institut de l'Elevage, Lallemand, Moy Park Beef Orléans, Neovia, Techna France Nutrition, Valorex. This project aims to reduce enteric methane emission by nutrition. MP was the recipient of a PHC Ulysses travel scholarship to Ireland, provided by the French ministry of Foreign Affairs and International Development (Ministères des Affaires Etrangères et du Développement International, MAEDI) and the ministry of National Education, Higher Education, and Research (Ministère de l'Education Nationale, de l'Enseignement Supérieur et de la Recherche, MENESR). EM was the recipient of a FACCE-JPI scholarship
    corecore