3,319 research outputs found

    Solution to Faddeev equations with two-body experimental amplitudes as input and application to J^P=1/2^+, S=0 baryon resonances

    Get PDF
    We solve the Faddeev equations for the two meson-one baryon system ππN\pi\pi N and coupled channels using the experimental two-body tt-matrices for the πN\pi N interaction as input and unitary chiral dynamics to describe the interaction between the rest of coupled channels. In addition to the N(1710)N^*(1710) obtained before with the ππN\pi\pi N channel, we obtain, for Jπ=1/2+J^\pi=1/2^+ and total isospin of the three-body system I=1/2I=1/2, a resonance peak whose mass is around 2080 MeV and width of 54 MeV, while for I=3/2I=3/2 we find a peak around 2126 MeV and 42 MeV of width. These two resonances can be identified with the N(2100)N^* (2100) and the Δ(1910)\Delta (1910), respectively. We obtain another peak in the isospin 1/2 configuration, around 1920 MeV which can be interpreted as a resonance in the Na0(980)N a_0(980) and Nf0(980)N f_0(980) systems.Comment: published versio

    Entanglement in bosonic systems

    Full text link
    We present a technique to resolve a Gaussian density matrix and its time evolution through known expectation values in position and momentum. Further we find the full spectrum of this density matrix and apply the technique to a chain of harmonic oscillators to find agreement with conformal field theory in this domain. We also observe that a non-conformal state has a divergent entanglement entropy.Comment: 7 pages, 6 figure

    One-Nucleon Effective Generators of the Poincare Group derived from a Field Theory: Mass Renormalization

    Get PDF
    We start from a Lagrangian describing scalar "nucleons" and mesons which interact through a simple vertex. Okubo's method of unitary transformation is used to describe a single nucleon dressed by its meson cloud. We find an expression for the physical mass of the nucleon being correct up to second order in the coupling constant. It is then verified that this result is the same as the corresponding expression found by Feynman techniques. Finally we also express the three boost operators in terms of the physical nucleon mass. Doing so we find expressions for all the ten generators of Poincar\'e transformations for the system of one single dressed nucleon.Comment: 19 pages, no figure

    GeoCLEF 2006: the CLEF 2006 Ccross-language geographic information retrieval track overview

    Get PDF
    After being a pilot track in 2005, GeoCLEF advanced to be a regular track within CLEF 2006. The purpose of GeoCLEF is to test and evaluate cross-language geographic information retrieval (GIR): retrieval for topics with a geographic specification. For GeoCLEF 2006, twenty-five search topics were defined by the organizing groups for searching English, German, Portuguese and Spanish document collections. Topics were translated into English, German, Portuguese, Spanish and Japanese. Several topics in 2006 were significantly more geographically challenging than in 2005. Seventeen groups submitted 149 runs (up from eleven groups and 117 runs in GeoCLEF 2005). The groups used a variety of approaches, including geographic bounding boxes, named entity extraction and external knowledge bases (geographic thesauri and ontologies and gazetteers)

    Challenges to evaluation of multilingual geographic information retrieval in GeoCLEF

    Get PDF
    This is the third year of the evaluation of geographic information retrieval (GeoCLEF) within the Cross-Language Evaluation Forum (CLEF). GeoCLEF 2006 presented topics and documents in four languages (English, German, Portuguese and Spanish). After two years of evaluation we are beginning to understand the challenges to both Geographic Information Retrieval from text and of evaluation of the results of geographic information retrieval. This poster enumerates some of these challenges to evaluation and comments on the limitations encountered in the first two evaluations

    Langevin Trajectories between Fixed Concentrations

    Full text link
    We consider the trajectories of particles diffusing between two infinite baths of fixed concentrations connected by a channel, e.g. a protein channel of a biological membrane. The steady state influx and efflux of Langevin trajectories at the boundaries of a finite volume containing the channel and parts of the two baths is replicated by termination of outgoing trajectories and injection according to a residual phase space density. We present a simulation scheme that maintains averaged fixed concentrations without creating spurious boundary layers, consistent with the assumed physics

    Revisiting Thymic Positive Selection and the Mature T Cell Repertoire for Antigen

    Get PDF
    To support effective host defense, the T cell repertoire must balance breadth of recognition with sensitivity for antigen. The concept that T lymphocytes are positively selected in the thymus is well established, but how this selection achieves such a repertoire has not been resolved. Here we suggest that it is direct linkage between self and foreign antigen recognition that produces the necessary blend of TCR diversity and specificity in the mature peripheral repertoire, enabling responses to a broad universe of unpredictable antigens while maintaining an adequate number of highly sensitive T cells in a population of limited size. Our analysis also helps to explain how diversity and frequency of antigen-reactive cells in a T cell repertoire are adjusted in animals of vastly different size scale to enable effective antipathogen responses and suggests a possible binary architecture in the TCR repertoire that is divided between germline-related optimal binding and diverse recognition

    Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments

    Full text link
    We study two continuous variable systems (or two harmonic oscillators) and investigate their entanglement evolution under the influence of non-Markovian thermal environments. The continuous variable systems could be two modes of electromagnetic fields or two nanomechanical oscillators in the quantum domain. We use quantum open system method to derive the non-Markovian master equations of the reduced density matrix for two different but related models of the continuous variable systems. The two models both consist of two interacting harmonic oscillators. In model A, each of the two oscillators is coupled to its own independent thermal reservoir, while in model B the two oscillators are coupled to a common reservoir. To quantify the degrees of entanglement for the bipartite continuous variable systems in Gaussian states, logarithmic negativity is used. We find that the dynamics of the quantum entanglement is sensitive to the initial states, the oscillator-oscillator interaction, the oscillator-environment interaction and the coupling to a common bath or to different, independent baths.Comment: 10 two-column pages, 8 figures, to appear in Phys. Rev.
    corecore